Problem 1. Let \(\{a_n\} \) be a sequence of real numbers. We may also claim that \(\{a_n\} \) is a sequence of constant (degenerate) random variables. Let \(a \) be a real number. Show that the convergence of the sequence \(a_n \) to \(a \) is equivalent to convergence of the corresponding degenerate random variables to the same limit in probability.

Problem 2. Let \(W_n \) denote a random variable with mean \(\mu \) and variance \(\sigma^2 \), where \(p > 0 \), \(\mu \), and \(b \) are constants independent on \(n \). Prove that \(W_n \) converges in probability to \(\mu \).

Problem 3. Prove that almost sure convergence of a sequence of random variables \(X_n, n = 1, 2, \ldots \) to a constant \(\mu \) is equivalent to the requirement that for every \(\epsilon > 0 \),

\[
\lim_{n \to \infty} P\{\sup_{k \geq n} |X_k - \mu| \geq \epsilon\} = 0.
\]

Also, show that

\[
\sum_{n=1}^{\infty} P\{|X_n - \mu| \geq \epsilon\} < \infty
\]

implies almost sure convergence.

Problem 4. Problems 2.11, 2.13, 2.15, 2.19 from the text.