Random vectors and estimation theory

\[X = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix} \text{, where } X_i \text{ are RVs / RANDOM VECTOR} \]
\[Y = \begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{bmatrix} \]

Two important matrices associated with RV's

\[
\begin{align*}
\text{Correlation matrix: } & E[X X^T] \\
\text{Cross-correlation: } & E[X T] \\
\text{Covariance matrix: } & E[(X-E(X))(X^T-E(X)^T)] \\
\text{Cross-covariance matrix: } & E[(X-E(X))(Y^T-E(Y)^T)]
\end{align*}
\]

Claim: Correlation and covariance matrices are symmetric, positive semi-definite matrices. If \(K \) is positive semi-definite, then there exists a zero-mean random vector \(X \) with \(K \) as its correlation matrix.

Proof: If \(K \) is a correlation matrix, then
\[
K = E[X X^T] \text{ for some RV } X
\]
\[
q^T K q = q^T E[X X^T] q = E[(q^T X)(X^T q)] = E[Q^T X^T X Q] > 0
\]
for non-random, \(q \in \mathbb{R}^n \).

For the second claim, suppose that \(K \) is positive semi-definite, then \(K \) has non-negative eigenvalues \(\lambda_1, \ldots, \lambda_n \) and the orthonormal matrix \(U \) formed from the eigenvector basis.

Let \(Y_i \) be independent RVs, s.t. \(E[Y_i] = 0, E[Y_i^2] = \lambda_i \)

\[Y = \begin{bmatrix} Y_1 \\ \vdots \\ Y_n \end{bmatrix} \]

Then, \(\text{Cov}(Y, Y) = \Lambda = \begin{bmatrix} \lambda_1 & 0 \\ 0 & \lambda_n \end{bmatrix} \)

Define \(X = U Y \)

Then, \(E[X] = U E[Y] = 0 \) and

\[
\text{Cov}(X, X) = \text{Cov}(U Y, U Y) = E[U Y Y^T U^T] = U E[Y Y^T] U^T = U \Lambda U^T = K
\]

One more definition:

Characteristic function \(\phi_X(u) = E[\exp(ju^T X)] \)
Orthogonality principle

Let us start with the case of scalar RVs.
Let \(X \) be a scalar RV that we cannot observe directly. We can try to "estimate" \(X \) either via repeated experiments (say, \(X' \)), or via the observation of some other RV \(Y \).

Say, having complicated formula, do not want to drag RV in it, prefer to have a constant \(b \) to be a "proxy" for \(X \).

What is the best choice for \(b \)?

Intuitively, mean should be a "good" proxy. Formally, if we seek to find \(b \) that minimizes MSE = mean square error \(E[(X-b)^2] \), we get

\[
+ 2E[(X-E[X])(E[X]-b)] + (E[X]-b)^2 = \text{var}(X) + (E[X]-b)^2
\]

\(b^* = E[X] \) minimizes the error, which in that case equals the variance.

Key to the simple proof was:

\[
E[(X-E[X])] = 0 \quad \text{for any estimator} \]

\[
i.e. \ E[(X-b^*)] = 0 \quad \forall \ b \in \mathbb{R}, \ \text{const.}
\]

error of optimal estimator

Formally:

Recall that \(X, Y \) are said to be uncorrelated if \(E[XY] = E[X]E[Y] \),

\(X, Y \) are orthogonal if

\(E[XY] = 0 \), \(X \perp Y \)

Above orthogonality principle asserts that \((X-E[X]) \perp \mathbf{1} \in \mathbb{C} \in \mathbb{C} \)

\(L^2(S, \mathcal{F}, P) \) is set of all RV's on given PS will have second moment (why finite - will use MSE)

\(\forall \in L^2(S, \mathcal{F}, P) \) s.t.,

a) \(\gamma \) is linear class: If \(Z_1, Z_2 \in \gamma \), then

\(a_1 Z_1 + a_2 Z_2 \in \gamma \), \(\forall \) const. \(a_1, a_2 \)

b) \(\gamma \) is closed in HS sense: \(Z_1, Z_2, \ldots \in \gamma \), \(Z_n \to Z \in \gamma \)

\(\Rightarrow Z \in \gamma \)
Let \(Y \) be as above.

a) \(\exists \hat{X} \in \mathcal{D} \) such that \(E[(X - \hat{X})^2] \leq E[(X - Z)^2] \quad \forall Z \in \mathcal{D} \) \(\hat{X} \) is unique.

b) \(W = Z \)
\(\implies \)
\(\forall Z \in \mathcal{D} \), \((X - W) \perp Z \)

\[\text{c) MVESE} = E[(X - \hat{X})^2] = E[X^2] - E[(\hat{X})^2] \]

Proof

b) Assume that \(W \) is \((X-W) \perp Z \) \(\forall Z \in \mathcal{D} \) (linearity) hence \((X-W) \perp (W-Z) \)
\[\text{i.e.} \quad E[(X-W)^2] \]
Assume has smallest MVESE

Assume has smallest MVESE

Show orthogonality

Expanding

\[E[(X-(\hat{X}-cZ))^2] = E[(X-\hat{X}-cZ)^2] = E[(X-\hat{X})^2] - E[2(X-\hat{X})cZ] \]
\[+ E[c^2Z^2] \]

From **

\[0 \leq E[c^2Z^2] - 2cE[(X-\hat{X})Z] \]
\[\frac{d(c)}{dc} \]

\[f'(c) = 0 \implies \]
\[\left(E[c^2Z^2] - 2cE[(X-\hat{X})Z] \right) = 0 \]
\[\left(2cE[Z^2] - 2E[(X-\hat{X})Z] \right) = 0 \]
\[\implies E[(X-\hat{X})Z] = 0 \]

\[\text{Easier} \]
Summary of properties of projections
Denote the projection of X onto Y as $\Pi_Y(X)$

1. $\Pi_Y(a_1X_1 + a_2X_2) = a_1\Pi_Y(X_1) + a_2\Pi_Y(X_2)$

2. Both ν_1, ν_2 are closed, $\nu_1 \subseteq \nu_2$

 $$\Pi_{\nu_2}(x) = \Pi_{\nu_1}(\Pi_{\nu_1}(x))$$

 $$E[(X - \Pi_{\nu_2}(x))^2] = E[(X - \Pi_{\nu_1}(x))^2] + E[(\Pi_{\nu_1}(x) - \Pi_{\nu_1}(x))^2]$$

 and

 $$E[(X - \Pi_{\nu_2}(x))^2] > E[(X - \Pi_{\nu_1}(x))^2]$$

3. Both ν_1, ν_2 are closed, $\nu_1 \perp \nu_2$

 $$\forall \nu_1 \in \nu_1, \forall \nu_2 \in \nu_2, \quad E[\nu_1\nu_2] = 0$$

Let $\nu = \nu_1 \cup \nu_2 = \{ x_1 + x_2 : x_1 \in \nu_1, \exists x_2 \in \nu_2 \}$

$$\Pi_\nu(x) = \Pi_{\nu_1}(x) + \Pi_{\nu_2}(x)$$

$$E[(X - \Pi_\nu(x))^2] = E[X^2] - E[(\Pi_{\nu_1}(x))^2] - E[(\Pi_{\nu_2}(x))^2]$$

The more important case: Estimating X based on observations of another variable Y. Estimator = function $f(Y) = f(Y)$

- All functions f
- Linear functions f

Let $Y = f(g(Y)) : g: \mathbb{R}^m \to \mathbb{R}^n, \quad E[\hat{g}(Y)\hat{g}(Y)] < \infty$

Assume that X, Y have a well-defined joint distribution, and in particular, a joint pdf

$$E[(X - g(Y))^2] = \int_{\mathbb{R}^m} E[(X - g(Y))^2 | Y = y] f_Y(y) dy$$

where

$$E[(X - g(Y))^2 | Y = y] = \int_{\mathbb{R}^m} (X - g(y))^2 f_{X|Y}(x) dx$$

Optimal MSE estimator $E[XY]$

Orthogonality principle $E[(X - E[XY])g(Y)] = 0$
Since \(E[\|X-g(Y)\|^2] = \sum_{i=1}^{m} E[(x_i-g_i(Y))^2] \), MLE estimation analysis carries over from the scalar to the vector case in the obvious way - through componentwise estimation.

\[
S^Y(x) = E\{X|Y\} = \begin{bmatrix}
E(Y_1|x)
\vdots
E(Y_m|x)
\end{bmatrix}
\]

Linear estimators:

\[
Y = \hat{Y} = a_0 + c_1Y_1 + c_2Y_2 + \cdots + c_mY_m \quad a_0, c_i \in \mathbb{R}
\]

\[
x = AY + b \quad e_i = x_i - A_i Y + b_i
\]

\[
E[\|x\|^2] < \infty \quad \Downarrow
\]

\[
E[\|x\|^2] < \infty
\]

1) \(e_i \perp \Delta \)
2) \(e_i \perp A_i \quad \forall i, \Delta \)

i) \(E[e_i] = 0 \Rightarrow E[x] = A E[Y] + b \Rightarrow b = E[x] - A E[Y] \)

ii) \(E[e_i Y_i^\Delta] = 0 \) which is equivalent to \(\text{cov} (e_i, Y_i^\Delta) = 0 \), since \(E[e_i Y_i^\Delta] = 0 \)

\[
\text{cov} (e, Y) = \text{cov} (x_i - A Y - b, Y) = \text{cov} (x_i, Y) - A \text{cov} (Y, Y) - 0 = 0
\]

\[
\Rightarrow \text{cov} (x_i, Y) = A \text{cov} (Y, Y)
\]

\[
A = \text{cov} (x_i, Y) \text{cov}^{-1} (Y, Y)
\]

Hence, the optimal estimator from the linear class is

\[
E [x|Y] = E [x] + A (Y - E[Y])
\]

\[
= E [x] + \text{cov}(x, Y) \text{cov}^{-1} (Y, Y) (Y - E[Y]) = 0
\]

\[
\text{cov} (e) = \text{cov} (x, x) = \text{cov} (x, x - g^Y(y)) = \text{cov} (x, x) - \text{cov} (x, g^Y(y))
\]

\[
= \text{cov} (x - E[X] - \text{cov}(x, y) \text{cov}^{-1} (Y, Y) (y - E[Y]), x) = \text{cov} (x) - \text{cov}(x, y) \text{cov}(y, y)^{-1} \text{cov}(y, x)
\]

Estimation error:

\[
\text{cov} (e) = \text{cov}(x) - \text{cov}(x, y) \text{cov}^{-1} (y, y) \text{cov}(y, x)
\]

Examples

Let \(Y = X + Z \) where the signal \(X \sim U[-1,1] \) and noise \(Z \sim N(0,1) \) are independent.

Find the MNSE for \(\text{sign}(X) \) (the sign function)

\[
g(y) = E [\text{sign}(X) | Y = y] = \int \text{sgn}(x) f_{X|Y}(x|y) dx
\]
\[
\begin{align*}
\frac{f_{X|Y}(x|y)}{f_Y(y)} &= \frac{f_{X,Y}(y|x)f_X(x)}{f_Y(y)} \\
&= \begin{cases}
\frac{1}{\sqrt{2\pi}} \cdot e^{-\frac{(x-y)^2}{2}} & \text{if } x \in [-1, 1] \\
0 & \text{otherwise}
\end{cases}
\end{align*}
\]

Since \(X, Y\) are independent \(Y|X = x_i \sim N(x_i, 1)\)

\[
f_Y(y) = \int_{-\infty}^{+\infty} f_{X,Y}(y|x) f_X(x) dx = \frac{1}{\sqrt{2\pi}} \int_{-1}^{1} e^{-\frac{(y-x)^2}{2}} dx
\]

\[
= \frac{1}{\sqrt{2}} \left(Q(y-1) - Q(y+1) \right)
\]

Hence, \(g(y) = \frac{Q(y+1) - 2Q(y) + Q(y-1)}{Q(y-1) - Q(y+1)}\)

\[
\phi_X(u) = e^{\frac{-u^2}{2}}
\]

Claim: \(X_1, \ldots, X_n\) are independent Gaussian RVs, then any \(\sum a_i X_i\) is Gaussian.

Proof: suffices to show that claim is true for \(n = 2\), \(a_1 = a_2 = 1\)

\[
\begin{align*}
X &= X_1 + X_2 \\
X_1 &\sim N(\mu_1, \sigma_1^2) \\
X_2 &\sim N(\mu_2, \sigma_2^2)
\end{align*}
\]

\[
\phi_X(u) = E[e^{-iuX}] = E[e^{-iuX_1}]E[e^{-iuX_2}] = e^{-\frac{u^2\sigma_1^2}{2}} e^{-\frac{u^2\sigma_2^2}{2}} e^{-u^2\mu_1 u} e^{-u^2\mu_2 u}
\]

Definition: \((X_i : i \in I)\) is jointly Gaussian if every finite linear combination of variables in the set is Gaussian.

\(X \sim N(\mu, K)\) mean vector \(\mu\), covariance \(K\)

Theorem:
1) \((X_i : i \in I)\) jointly Gaussian, then each \(X_i\) is Gaussian
2) If \((X_i : i \in I)\) are Gaussian, and independent (for any finite collection), then \((X_i : i \in I)\) are jointly Gaussian.
3) \((X_i : i \in I)\) jointly Gaussian,

\(Y_i\)'s finite linear combinations of \(X_i\)'s; \(Z_k\)'s limits of sequence \(m(y_{i,j})\)

\((Y_i : i \in I)\), \((Z_k : k \in K)\) are each jointly Gaussian RVs.
Proposition 2.8 from the lecture notes

\(X_n \in \mathcal{N}, \forall n \)

\(X_n \Rightarrow X \sim (\text{a.s., w.s., p, d}) \Rightarrow X \sim \text{Gaussian} \)

4) Characteristic function of \(X \in \mathcal{N}_v(\mu, K) \), \(\text{dom}(X) = \mathbb{R} \)

\(\phi_X(u) = e^{i \mu^T u - \frac{1}{2} u^T K u} \)

5) If \(K \) is diagonal, then components of \(X \) are independent.

\(X, Y \) are jointly Gaussian vectors; they are independent if \(\text{Cov}(X,Y) = 0 \)

6) \(f_X(x) = \frac{1}{(2\pi)^{n/2} |K|^{1/2}} \exp \left(-\frac{(x - \mu)^T K^{-1} (x - \mu)}{2} \right) \)

Problem: Suppose that \(X, Y \) are jointly Gaussian, with parameters \(E[X] = \mu_X, E[Y] = \mu_Y, \text{Var}(X) = \sigma_X^2, \text{Var}(Y) = \sigma_Y^2, E[XY] = \sigma_{XY} \). Are the following claims true or false?

1. \(X, Y \) are Gaussian.

2. \(X \in \mathcal{N}(\mu_X, \sigma_X^2), Y \in \mathcal{N}(\mu_Y, \sigma_Y^2) \)

3. \(Z = ax + by, a, b \in \mathbb{R} \), is Gaussian with mean \(\alpha \mu_X + b \mu_Y \).

4. \(Z \sim X, Y \) independent.

5. \(Z = ax + by, a, b \in \mathbb{R} \), is Gaussian with variance \(\alpha^2 \sigma_X^2 + b^2 \sigma_Y^2 \).

\(\text{Cov}(Z, Z') = \text{Cov}(ax + by, ax + by) = a^2 \text{Var}(X) + 2ab \text{Cov}(X, Y) + b^2 \text{Var}(Y) \)

6. The linear MMSE of \(X \) given \(Y \) is

\(X_L = \mu_X + \frac{\sigma_{XY}}{\sigma_Y^2} (Y - \mu_Y) \)

Linear MMSE = unrestricted MMSE

\(E[X|Y] = E[X] + \frac{\text{Cov}(X,Y)}{\text{Var}(Y)} (Y - E[Y]) \)

\(= \mu_X + \frac{\text{Cov}(X,Y)}{\sigma_Y^2} (Y - \mu_Y) = \mu_X + \frac{\sigma_{XY}}{\sigma_Y^2} (Y - \mu_Y) \)

Recall that \(\frac{\sigma_{XY}}{\sigma_X \sigma_Y} = \frac{\text{Cov}(X,Y)}{\sigma_X \sigma_Y} \)

7. The conditional distribution of \(Y|X \) is Gaussian.
Example (Extra)

Let y be an unobservable RV with $E[y] = 0$, $\text{var}(x) = 4$. We observe

\[
\begin{align*}
Y_1 &= X + W_1, & E[W_1] = E[W_2] = 0 \\
Y_2 &= X + W_2, & \text{var}(W_1) = 4, \text{var}(W_2) = 4
\end{align*}
\]

W_1, W_2, X are independent.

Find the linear MISE estimator of x given Y_1, Y_2

$$\hat{x}_L = aY_1 + bY_2 + c$$

Orthogonality principle

1) $E[(X - aY_1 - bY_2 - c)] = 0 \quad \Rightarrow \quad c = 0$

2) $E[(X - aY_1 - bY_2)Y_1] = 0, \ E[(X - aY_1 - bY_2)Y_2] = 0$

\[
\begin{align*}
E[Y_1] - aE[Y_1^2] - bE[Y_2]E[Y_1] = 0
\end{align*}
\]

\[
\begin{align*}
E[X(X + w_1)] - aE[(X + w_1)^2] - bE[(X + w_1)(X + w_2)] = 0
\end{align*}
\]

\[
\begin{align*}
E[X^2] + E[Y_1Y_2] - a(E[X^2] + E[w_1^2]) - b(E[X^2] + E[w_2^2]) = 0
\end{align*}
\]

$$4 - 5a - 4b = 0 \quad \quad 5a + 4b = 4$$

Similarly, ...

$$4a + 8b = 4$$

\[
\begin{align*}
\Rightarrow \quad a = \frac{2}{3}, \quad b = \frac{1}{6}
\end{align*}
\]

$$\hat{x}_L = \frac{2}{3}Y_1 + \frac{1}{6}Y_2$$

Example Suppose x, y are jointly Gaussian, zero mean, $X = \begin{pmatrix} 4 \\ 3 \end{pmatrix}$

$E[x^2 | y] = ?$

Observe the following: X, Y jointly Gaussian vectors, $y \in \mathbb{R}$

$X | Y = y \sim N(X_L(y); \text{Cov}(e))$

and $X_L(y) = E[X | Y = y]$

If $\text{Cov}(y)$ is non-singular

$$E[X | Y = y] = X_L(y) = E[X] + \text{Cov}(X, Y) \text{Cov}(Y)^{-1} (y - E[Y])$$

$\text{Cov}(e) = \text{Cov}(X) - \text{Cov}(X, Y) \text{Cov}(Y)^{-1} \text{Cov}(Y, X)$

and if $\text{Cov}(e)$ is non-singular

$$f_{X | Y = y}(x | y) = \frac{1}{(2\pi)^{w/2} |\text{Cov}(e)|^{1/2}} \exp\left(-\frac{1}{2} (x - X_L(y))^T \text{Cov}^{-1}(e) (x - X_L(y)) \right)$$
Proof Consider \(X_e(Y) = \text{linear function of } Y \)

\[e = X - X_e(Y) = \text{linear function of } X_1, Y \]

Orthogonality \(E[e] = 0 \)

\(\text{principle } \text{Cov}(e, Y) = 0 \implies Y, e \text{ are jointly Gaussian, independent} \)

Next, rewrite \(X = e + X_e(Y) \)

given \(Y = y \), \(e | Y = y \sim N(0, \text{Cov}(e)) \)

Hence \(X | Y = y \sim N(X_e(y), \text{Cov}(e)) \)

Also, \(E[X | Y] = X_e(Y) \)

Example solution \(X, Y \) are jointly Gaussian, zero mean, \(K = \begin{pmatrix} 4 & 3 \\ 3 & 3 \end{pmatrix} \)

Given \(Y = y \), the conditional distribution of \(X \) is

\[N \left(\frac{\text{Cov}(X, Y)}{\text{Var}(Y)} y, \text{Cov}(X) - \frac{\text{Cov}^2(X, Y)}{\text{Var}(Y)} \right) \]

\[N \left(\frac{3y}{2}, 3 \right) \]

\[E[X^2 | Y = y] = \left(\frac{3y}{2} \right)^2 + 3 \]
Suppose X is a RV with $E[X^4] = 30$.
- Derive an upper bound on $P(|X| > 10)$.
- Find a distribution for X s.t. that the upper bound holds with equality.

\[
P(|X| > 10) \leq \frac{E[f(X)]}{f(10)}
\]

Take $f(X) = X^4$.

\[
P(|X| > 10) \leq \frac{E[X^4]}{10^4} = \frac{30}{10^4} = 0.003
\]

\[
P(X = 10) = 0.003
\]

\[
P(X = 0) = 1 - 0.003
\]

Let U_1, U_2, \ldots be a sequence of independent random variables, each uniformly distributed in $[0,1]$.

For what values of $c > 0$ does there exist a $b > 0$ (depending on c) s.t.

\[
P(U_1 + \ldots + U_n > c n < e^{-bn} \quad \forall n \geq 1
\]

\[
E[U_1] = \frac{1}{2} \quad E[U_1 + \ldots + U_n] = \frac{n}{2}
\]

Want $c > 1/2$.

If $c = 1/2$, prob is exactly 0.5.

Define $X_i = U_i - c U_{n+1}$.

X_i's are iid, $E[X_i] = \frac{1}{2} - c \frac{1}{2} = \frac{1-c}{2}$.

\[
P(X_1 + \ldots + X_n \geq 0) \leq e^{-bn}
\]

\[
\Rightarrow \quad 0 > \frac{c-1}{2} \quad \Rightarrow \quad c < 1
\]