Apply the Gauss-Seidel iteration to the system

\[
A = \begin{bmatrix}
0.96326 & 0.81321 \\
0.81321 & 0.68654
\end{bmatrix} \quad b = \begin{bmatrix}
0.88824 \\
0.74988
\end{bmatrix}
\]

Use \(x^{(0)} = [0.33116\quad 0.70000]^T \) and explain what happens

\[
L + D = \begin{bmatrix}
0.96326 & 0 \\
0.81321 & 0.68654
\end{bmatrix} \quad U = \begin{bmatrix}
0 & 0.81321 \\
0 & 0
\end{bmatrix}
\]

\[
G_{GS} = -(L + D)^{-1}U = \begin{bmatrix}
0 & -0.84423 \\
0 & 0.99999
\end{bmatrix} \quad c = (L + D)^{-1}b = \begin{bmatrix}
0.92212 \\
0.00000568
\end{bmatrix}
\]

\[
x^{(i+1)} = -(L + D)^{-1}Ux^{(i)} + (L + D)^{-1}b = \begin{bmatrix}
0.3311598 \\
0.6999993
\end{bmatrix}
\]

The fact that \(\Delta x \) between \(x^{(1)} \) and \(x^{(0)} \) is very small is a warning that the Gauss-Seidel method may not converge or may converge slowly. Depending on the \(\epsilon \) you choose, the number of iterations could be in the thousands, if not hundreds of thousands.

A closer look at the convergence of this stationary method: find the eigenvalues of \(G \).

"A necessary and sufficient condition for the convergence is that the magnitude of matrix \(G \) is smaller than 1 (or lies withing the unit circle in the complex plane)"

\[
eig(G) = \begin{bmatrix}
0 \\
0.9999909
\end{bmatrix}
\]

The system does converge, but extremely slowly.
Solve problem 1 using the conjugate gradient method. What happens now?

\[A = \begin{bmatrix} 0.96326, & 0.81321; \\ 0.81321, & 0.68654 \end{bmatrix}; \]
\[b = \begin{bmatrix} 0.88824; \\ 0.74988 \end{bmatrix}; \]
\[i = 0; \]
\[x = \text{zeros(size(b))}; \]
\[x = \begin{bmatrix} 0.33116; \\ 0.70000 \end{bmatrix}; \]
\[r_o = b - A * x; \]
\[r_n = r_o; \]
\[\text{epsi} = 1e-7; \]
\[\text{while} (\text{norm}(r_n, \infty) > \text{epsi}) \]
\[\text{if } i = 0 \]
\[d = r_n; \]
\[\text{else} \]
\[b = (r_n' * r_n) / (r_o' * r_o); \]
\[d = r_n + b * d; \]
\[\text{end} \]
\[a = (d' * r_n) / (d' * A * d); \]
\[x = x + a * d; \]
\[r_o = r_n; \]
\[r_n = r_o - a * A * d; \]
\[i = i + 1; \]
\[\text{end} \]
\[x = \begin{bmatrix} 0.394727656563906; \\ 0.624702890464605 \end{bmatrix}; \]
\[i = 2 \]

Note: It doesn't matter whether you start with \(x = [0, 0]^T \) or \(x^{(0)} \) from Problem 1

Note: If \(\epsilon = 1e^{-6} \), the solution will prematurely stop after 1 iteration.
For the two-bus case in Problem 3 of Problem Set 1, place a transformer with p.u. reactance \(X = 0.2j \) an the tap \(t = 15\text{deg} \) between Bus 2 and the load. Find the new admittance matrix.

\[
Y_{bus} = \begin{bmatrix}
-j9.9 & j10 & 0 \\
-j10 & -j14.9 & -0.436 + j4.981 \\
0 & 0.436 + j4.981 & -j5
\end{bmatrix}
\]

\[
I_1 = \frac{V_2 - V_1}{j0.1} + V_1(j0.1) = (-j9.9)V_1 + (j10)V_2
\]

\[
I_2 = \frac{V_2 - V_1}{j0.1} + V_2(j0.1) + V_2(\frac{j5}{e^{j5}}) + V_3(\frac{j5}{e^{j5}}) = (j10)V_1 + (-j14.9)V_2 + (-0.436 + j4.981)V_3
\]

\[
I_3 = V_2(\frac{j5}{e^{j5}}) + V_3(\frac{j5}{e^{j5}}) = (0.436 + j4.981)V_2 + (-j5)V_3
\]

There should be 16 entries in the Jacobian. We take the partial derivative of \(P_2 \), \(Q_2 \), \(P_3 \), and \(Q_3 \) with respect to \(V_2 \), \(V_3 \), \(\theta_2 \) and \(\theta_3 \).
For the five-bus case in Problem Set 2, solve it again using the dc power flow model. Compare the solution with the one you obtained using the N-R power flow method.

SET UP (FROM PREVIOUS)

\[
Y_{bus} = \begin{bmatrix}
3.7290-j*49.7203 & 0 & 0 & -3.7290+j*49.7203 \\
0 & 2.6783-j*28.4590 & 0 & -0.8928+j*9.9197 \\
0 & 0 & 7.4580-j*99.4406 & -7.4580+j*99.4406 \\
0 & -0.8928+j*9.9197 & -7.4580+j*99.4406 & 11.9219-j*147.9589 \\
-3.7290+j*49.7203 & -1.7855+j*19.8393 & 0 & -3.5711+j*39.6786
\end{bmatrix}
\]

\[
PG = \begin{bmatrix} 0 & 0 & 5.2 & 0 & 0 \end{bmatrix};
\]

\[
PD = \begin{bmatrix} 0 & 8 & .8 & 0 & 0 \end{bmatrix};
\]

DC POWER FLOW

\[
B = \text{imag}(Y_{bus}(2:5,2:5));
\]

\[
P = (PG(2:5)-PD(2:5))';
\]

% in radians
\[
\text{THETA} = -\text{inv}(B)*P;
\]

\[
\text{THETAdeg} = \text{rad2deg}(\text{THETA});
\]

<table>
<thead>
<tr>
<th>N-R V</th>
<th>DC V</th>
<th>N-R θ (rad)</th>
<th>N-R θ (rad)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.8338</td>
<td>1</td>
<td>-0.3910</td>
<td>-0.3574</td>
</tr>
<tr>
<td>1.05</td>
<td>1</td>
<td>-0.0104</td>
<td>-0.0068</td>
</tr>
<tr>
<td>1.0193</td>
<td>1</td>
<td>-0.0494</td>
<td>-0.0511</td>
</tr>
<tr>
<td>0.9743</td>
<td>1</td>
<td>-0.0794</td>
<td>-0.0840</td>
</tr>
</tbody>
</table>