Distributed Resilient Consensus

Nitin Vaidya
University of Illinois at Urbana-Champaign

Work supported in part by
Consensus ... Dictionary Definition

- General agreement
- Majority opinion
Many Faces of Consensus

- What time is it?

- Network of clocks ...

agree on a common notion of time
Many Faces of Consensus

- Where to go for dinner?

- Network of friends…

 agree on a location
Many Faces of Consensus

- What is the temperature?

- Network of sensors …

agree on current temperature
Many Faces of Consensus

- Should we trust 😊?
- Web of trust …

agree whether 😊 is good or evil
Many Faces of Consensus

- All nodes have non-null input / only a subset do
- No failures / failures allowed (node/link)
- Synchronous/asynchronous
- Deterministically correct / probabilistically correct
- Exact agreement / approximate agreement
Consensus … one definition

- want to decide which way to fly
- Every proposes a direction

- Consensus ≈ decision in convex hull of inputs
Average Consensus

- want to decide which way to fly

- Every proposes a direction

- Consensus \approx average of inputs
1980: Byzantine consensus

1983: Impossibility of consensus with asynchrony & failure

Tsitsiklis 1984: Decentralized control
[Jadbabaei 2003]

1986: Approximate consensus with asynchrony & failure

1989: Swarm intelligence

1990-98: Paxos

[Kleinberg] Small World 2000:
[Milgram 1960s]

1996: Failure detectors

Selective History
Consensus

- 30+ years of research
- Anything still new under the sun?

More accurate network models
Motivated by Wireless Networks

- Lossy links
- Directed links
- Capacity-constrained links
Review
Centralized Solution

- A leader collects inputs & disseminates decision
Distributed Iterative Solution

- Initial state \(a, b, c = \text{input} \)
Distributed Iterative Solution

- State update (iteration)

\[a = \frac{3a}{4} + \frac{c}{4} \]

\[b = \frac{3b}{4} + \frac{c}{4} \]

\[c = \frac{a}{4} + \frac{b}{4} + \frac{c}{2} \]
\[
\begin{pmatrix}
a \\
b \\
c
\end{pmatrix}
:=
\begin{pmatrix}
3/4 & 0 & 1/4 \\
0 & 3/4 & 1/4 \\
1/4 & 1/4 & 1/2
\end{pmatrix}
\begin{pmatrix}
a \\
b \\
c
\end{pmatrix}
= \mathbf{M}
\begin{pmatrix}
a \\
b \\
c
\end{pmatrix}
\]

\[c = \frac{a}{4} + \frac{b}{4} + \frac{c}{2}\]

\[b = \frac{3b}{4} + \frac{c}{4}\]

\[a = \frac{3a}{4} + \frac{c}{4}\]
after 2 iterations

\[
\begin{pmatrix}
a \\
b \\
c
\end{pmatrix} := M \begin{pmatrix}
a \\
b \\
c
\end{pmatrix} = M^2 \begin{pmatrix}
a \\
b \\
c
\end{pmatrix}
\]

after 1 iteration

\[
\begin{pmatrix}
a \\
b \\
c
\end{pmatrix} := M \begin{pmatrix}
a \\
b \\
c
\end{pmatrix} = M^2 \begin{pmatrix}
a \\
b \\
c
\end{pmatrix}
\]

\[
a = 3a/4 + c/4
\]

\[
b = 3b/4 + c/4
\]

\[
c = a/4 + b/4 + c/2
\]
after k iterations

\[
\begin{pmatrix}
 a \\
 b \\
 c
\end{pmatrix}
\stackrel{M^k}{=} \begin{pmatrix}
 a \\
 b \\
 c
\end{pmatrix}
\]

\[c = \frac{a}{4} + \frac{b}{4} + \frac{c}{2}\]

\[b = \frac{3b}{4} + \frac{c}{4}\]

\[a = \frac{3a}{4} + \frac{c}{4}\]
Well-Known Results
Well-Known Results

Reliable links & nodes:

- Consensus achievable iff at least one node can reach all other nodes

- Average consensus achievable iff strongly connected graph with suitably chosen transition matrix M

Row stochastic M

Doubly stochastic M

with suitably chosen transition matrix M
\[
\begin{pmatrix}
a \\
b \\
c
\end{pmatrix}
:= \ M^k \begin{pmatrix}
a \\
b \\
c
\end{pmatrix} \Rightarrow
\begin{pmatrix}
1/3 & 1/3 & 1/3 \\
1/3 & 1/3 & 1/3 \\
1/3 & 1/3 & 1/3
\end{pmatrix}
\begin{pmatrix}
a \\
b \\
c
\end{pmatrix}
\]

Doubly stochastic \(M \)

\[
c = a/4 + b/4 + c/2
\]

\[
b = 3b/4 + c/4
\]

\[
a = 3a/4 + c/4
\]
An Implementation: Mass Transfer + Accumulation

- Each node “transfers mass” to neighbors via messages
- Next state = Total received mass

\[\begin{align*}
 c &= a/4 + b/4 + c/2 \\
 a &= 3a/4 + c/4 \\
 b &= 3b/4 + c/4
\end{align*} \]
An Implementation:
Mass Transfer + Accumulation

- Each node “transfers mass” to neighbors via messages
- Next state = Total received mass

\[
c = \frac{a}{4} + \frac{b}{4} + \frac{c}{2}
\]

\[
b = \frac{3b}{4} + \frac{c}{4}
\]

\[
a = \frac{3a}{4} + \frac{c}{4}
\]
Conservation of Mass

- \(a + b + c\) constant after each iteration

\[
c = \frac{a}{4} + \frac{b}{4} + \frac{c}{2}
\]

\[
b = \frac{3b}{4} + \frac{c}{4}
\]

\[
a = \frac{3a}{4} + \frac{c}{4}
\]
Outline

- Lossy links
- Directed links
- Capacity-constrained links
Wireless Transmissions Unreliable

\[c = \frac{a}{4} + \frac{b}{4} + \frac{c}{2} \]

\[b = \frac{3b}{4} + \frac{c}{4} \]

\[a = \frac{3a}{4} + \frac{c}{4} \]
Impact of Unreliability

\[
\begin{pmatrix}
 a \\
 b \\
 c
\end{pmatrix}
=
\begin{pmatrix}
 3/4 & 0 & 1/4 \\
 0 & 3/4 & 0 \\
 1/4 & 1/4 & 1/2
\end{pmatrix}
\begin{pmatrix}
 a \\
 b \\
 c
\end{pmatrix}
\]

\[b = \frac{3b}{4} + \frac{c}{4}\]

\[c = \frac{a}{4} + \frac{b}{4} + \frac{c}{2}\]

\[a = \frac{3a}{4} + \frac{c}{4}\]
Conservation of Mass

\[
\begin{pmatrix}
 a \\
 b \\
 c
\end{pmatrix} =
\begin{pmatrix}
 3/4 & 0 & 1/4 \\
 0 & 3/4 & 0 \\
 1/4 & 1/4 & 1/2
\end{pmatrix}
\begin{pmatrix}
 a \\
 b \\
 c
\end{pmatrix}
\]

\[b = \frac{3b}{4} + \frac{c}{4}\]

\[c = \frac{a}{4} + \frac{b}{4} + \frac{c}{2}\]

\[a = \frac{3a}{4} + \frac{c}{4}\]
Average consensus over lossy links ?
Existing Solution

Assume that transmitter **KNOWS** when a message is not delivered
Existing Solution

When mass not transferred to neighbor,

keep it to yourself
Convergence ... if nodes intermittently connected

\[
\begin{pmatrix}
 a \\
 b \\
 c
\end{pmatrix}
=
\begin{pmatrix}
 3/4 & 0 & 1/4 \\
 0 & 3/4 & 0 \\
 1/4 & 1/4 & 3/4
\end{pmatrix}
\begin{pmatrix}
 a \\
 b \\
 c
\end{pmatrix}
\]

\[
c = a/4 + b/4 + c/2 + c/4
\]

\[
a = 3a/4 + c/4
\]

\[
b = 3b/4 + c/4
\]
Link Model

Assume that

transmitter *KNOWS* when a message is not delivered
All models are wrong; some models are useful.

-- George Box
Better Model?

No common knowledge regarding message delivery
Solution

- Introduce memory
Solution Sketch

- $S =$ mass C wanted to transfer to node A in total so far
- $R =$ mass A has received from node C in total so far
Solution Sketch

- Node C transmits quantity S
 message may be lost

- When it is received, node A accumulates (S-R)
What Does That Do?
What Does That Do?

- Implements virtual buffers
Dynamic Topology

- When C→B transmission unreliable, mass transferred to buffer (d)

- \(d = d + \frac{c}{4} \)
Dynamic Topology

- When C→B transmission unreliable, mass transferred to buffer (d)

- \(d = d + \frac{c}{4} \)

No loss of mass even with message loss
Dynamic Topology

- When C→B transmission **reliable**, mass transferred to \(b \)

\[b = \frac{3b}{4} + \frac{c}{4} + d \]

- No loss of mass even with message loss
Does This Work?
Does This Work?
Why Doesn’t it Work?

- After k iterations, state of each node has the form

 \[z(k) \times \text{sum of inputs} \]

 where \(z(k) \) changes each iteration (k)

- Does \textbf{not} converge to average
Solution

- Run two iterations in parallel
 - First : original inputs
 - Second : \texttt{input = 1}
Solution

- Run two iterations in parallel

 - First: original inputs

 - Second: input = 1

- After k iterations ...

 first algorithm: \(z(k) \times \text{sum of inputs} \)
 second algorithm: \(z(k) \times \text{number of nodes} \)
Solution

- Run two iterations in parallel

 - First: original inputs
 - Second: \(\text{input} = 1 \)

- After \(k \) iterations …

 first algorithm: \(z(k) \times \text{sum of inputs} \)
 second algorithm: \(z(k) \times \text{number of nodes} \)

 \(\text{ratio} = \text{average} \)
numerator

denominator

ratio
Open Problem

- How to handle lossy links in other iterative computations?
Outline

- Lossy links
- Directed links
- Capacity-constrained links
Outline

- Lossy links
- Directed links
- Capacity-constrained links

Iterative Byzantine Consensus
Byzantine Consensus

Up to \(f \) nodes faulty

- **Agreement:** Good nodes agree on (approximately) identical value

- **Validity:** If all good nodes have identical input, agreed value equals that input
Iterative Consensus in Complete Graphs

Each iteration:

- Send state to others … receive from others
- Drop low and high f values
- New state = average of the rest
Incomplete Graphs

Which directed graphs can solve Byzantine consensus iteratively?
Necessary & Sufficient Condition

A

B

C

F

≥ f+1

≥ f+1
Matrix Representation

- \(s = \text{state vector of all nodes} \)

\[
\begin{align*}
 s &= M \ast s \\
\end{align*}
\]

- Faulty nodes can behave arbitrarily
Matrix Representation

\[s = \text{state vector of FAULT-FREE nodes} \]

\[s = M[t] \times s \]

where \(M[t] \) depends on behavior of faulty nodes in the \(t \)-th iteration.
Matrix Representation

- $s =$ state vector of \textit{FAULT-FREE} nodes

$$s = M[t] \ast s$$

where $M[t]$ depends behavior of faulty nodes in t-th iteration

Many such $M[t]$ exist
Matrix Representation

- Many such $M[t]$ exist

- When the graph satisfies the necessary condition, possible to choose $M[t]$ with adequate “connectivity”

- Results in correct decision
Byzantine Consensus

- Similar question for exact consensus
- Without constraining to iterative structure

Which directed graphs can solve the problem?
Necessary & Sufficient Condition

\[\geq f+1 \]
Outline

- Lossy links
- Directed links
- Capacity-constrained links
Link Capacity Constraints
Byzantine Consensus ... Known Bounds

- $\Omega(n^2)$ messages in worst case
- $f+1$ rounds of communication
Link Capacity Constraints

- How to quantify the impact?
Metric 1: Communication Cost per Bit

\[
\frac{\text{Total communication cost (in bits)}}{\text{Number of bits of Byzantine broadcast}}
\]
Metric 1: Communication Cost per Bit

Total communication cost (in bits)
Number of bits of Byzantine consensus

Ignores network characteristics
Metric 2: Throughput

- Borrow notion of throughput from networking

- \(b(t) = \) number of bits agreed upon in \([0,t]\)

\[
\text{Throughput} = \lim_{{t \to \infty}} \frac{b(t)}{t}
\]
Problem Definition

- What is the achievable throughput of consensus over a capacitated network?

- Some progress … but not completely solved
Summary

- Lossy links
- Directed links
- Capacity-constrained links
Summary

- Open problems

communications / networking

distributed algorithms