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REDUCED INSTRUCTION SET COMPUTERS 

Reduced instruction set computers aim for both simplicity in hardware and 
synergy between architectures and compilers. Optimizing compilers are used 
to compile programming languages down to instructions that are as 
unencumbered as microinstructions in a large virtual address space, and to 
make the instruction cycle time as fast as possible. 

DAVID A. PATTERSON 

As circuit technologies reduce the relative cost of proc- 
essing and memory, instruction sets that are too com- 
plex become a distinct liability to performance. The 
designers of reduced instruction set computers (RISCs) 
strive for both simplicity in hardware and synergy be- 
tween architecture and compilers, in order to stream- 
line processing as much as possible. Early experience 
indicates that RISCs can in fact run much faster than 
more conventionally designed machines. 

BACKGROUND 
The IBM System/360, first introduced in 1964, was the 
real beginning of modern computer architecture. Al- 
though computers in the System/360 “family” provided 
a different level of performance for a different price, all 
ran identical software. The System/360 originated the 
distinction between computer architecture-the abstract 
structure of a computer that a machine-language pro- 
grammer needs to know to write programs-and the 
hardware implementation of that structure. Before the 
System/BBO, architectural trade-offs were determined 
by the effect on price and performance of a single im- 
plementation: henceforth, architectural trade-offs be- 
came more esoteric. The consequences of single imple- 
mentations would no longer be sufficient to settle an 
argument about instruction set design. 

Microprogiamming was the primary technological 
innovation behind this marketing concept. Micropro- 
gramming relied on a small control memory and was an 
elegant way of buil.ding the processor control unit for a 
large instruction set. Each word of control memory is 
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called a microinstruction, and the contents are essen- 
tially an interpreter, programmed in microinstructions. 
The main memories of these computers were magnetic 
core memories, the small control memories of which 
were usually 10 times faster than core. 

Minicomputer manufacturers tend to follow the lead 
of mainframe manufacturers, especially when the 
mainframe manufacturer is IBM, and so microprogram- 
ming caught on quickly. The rapid growth of semicon- 
ductor memories also speeded this trend. In the early 
1970s. for example, 8192 bits of read-only memory 
(ROM) took up no more space than 8 bits of register. 
Eventually, minicomputers using core main memory 
and semiconductor control memory became standard in 
the minicomputer industry. 

With the continuing growth of semiconductor mem- 
ory, a much richer and more complicated instruction 
set could be implemented. The architecture research 
community argued for richer instruction sets. Let us 
review some of the arguments they advanced at that 
time: 

1. Richer instruction sets would simplify compilers. As 
the story was told, compilers were very hard to 
build, and compilers for machines with registers 
were the hardest of all. Compilers for architectures 
with execution models based either on stacks or 
memory-to-memory operations were much simpler 
and more reliable. 

2. Richer instruction sets would alleviate the software cri- 
sis. At a time when software costs were rising as 
fast as hardware costs were dropping, it seemed 
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appropriate to move as much function to the hard- 
ware as possible. The idea was to create machine 
instructions that resembled programming language 
statements, so as to close the “semantic gap” be- 
tween programming languages and machine lan- 
guages. 
Richer instruction sets would improve architecture qual- 
ity. After IBM differentiated architecture from im- 
plementation, the research community looked for 
ways to measure the quality of an architecture, as 
opposed to the speed at which implementations 
could run programs. The only architectural metrics 
then widely recognized were program size, the 
number of bits of instructions, and bits of data 
fetched from memory during program execution 
(see Figure 1). 

Memory efficiency was such a dominating concern in 
these metrics because main memory-magnetic core 
memory-was so slow and expensive. These metrics 
are partially responsible for the prevailing belief in the 
1970s that execution speed was proportional to program 
size. It even became fashionable to examine long lists of 
instruction execution to see if a pair or triple of old 
instructions could be replaced by a single, more power- 
ful instruction. The belief that larger programs were 
invariably slower programs inspired the invention of 
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many exotic instruction formats that reduced program 
size. 

The rapid rise of the integrated circuit, along with 
arguments from the architecture research community 
in the 1970s led to certain design principles that guided 
computer architecture: 

The memo y technology used for microprograms was 
growing rapidly, so large microprograms would add lit- 
tle or nothing to the cost of the machine. 
Since microinstructions were much faster than normal 
machine instructions, moving software functions to mi- 
crocode made for faster computers and more reliable 
functions. 
Since execution speed was proportional to program size, 
architectural techniques that led to smaller programs 
also led to faster computers. 
Registers were old fashioned and made it hard to build 
compilers; stacks or memory-to-memory architectures 
were superior execution models. As one architecture re- 
searcher put it in 1978, “One’s eyebrows should rise 
whenever a future architecture is developed with a 
register-oriented instruction set.“’ 

Computers that exemplify these design principles are 
the IBM 370/168, the DEC VAX-11/780, the Xerox 
’ Myers, G.). The case against stack-oriented instruction sets. Comput. Archit. 
News 6. 3 (Aug. 1977). 7-10. 
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In this example, the three data words are 32 bits each 
and the address field is 16 bits. Metrics were selected by 
research architects for deciding which architecture is 
best; they selected the total size of executed instructions 
(I), the total size of executed data (D), and the total mem- 
ory traffic-that is, the sum of I and D, which is (M). 

These metrics suggest that a memory-to-memory archi- 
tecture is the “best” architecture, and a register-to-regis- 
ter architecture the “worst.” This study led one research 
architect in 1978 to suggest that future architectures 
should not include registers. 

FIGURE 1. The Statement A c B + C Translated into Assembly Language for Three Execution Models: Register-to-Register, 
Memory-to-Register, and Memory-to-Memory 
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Year 
Number of instructions 
Control memory size 
Instruction sizes (bits) 
Technology 
Execution model 

Cache size 

TABLE I. Four Implementations of Modem Architectures 

l8M 370/168 VAX-11/780 Dorado 

1973 1978 1978 
208 303 270 

420 Kb 480 Kb 138 Kb 
16-48 16-456 8-24 

ECL MSI l-I-L MSI ECL MSI 
reg-mem reg-mem stack 

mem-mem mem-mem 

44-w reg-reg 
64 Kb 64 Kb 64 Kb 

iAPX-432 

1982 
222 

64 Kb 
6-321 

NMOS VLSI 
stack 

mem-mem 

0 

These four implementations, designed in the 197Os, all used 
microprogramming. The emphasis on memory efficiency at 
that time led to the varying-sized instruction formats of the 

Dorado, and the Intel iAPX-432. Table I shows some of 
the characteristics of these machines. 

Although computer architects were reaching a con- 
sensus on design principles, the implementation world 
was changing around them: 

Semiconductor memory was replacing core, which 
meant that main memories would no longer be 10 
times slower tha.n control memories. 
Since it was virtually impossible to remove all mis- 
takes for 400,000 bits of microcode, control store 
ROMs were becoming control store RAMS. 
Caches had been invented-studies showed that the 
locality of programs meant that small, fast buffers 
could make substantial improvement in the imple- 
mentation speed. of an architecture. As Table I shows, 
caches were included in nearly every machine, 
though control memories were much larger than 
cache memories. 
Compilers were subsetting architectures-simple 
compilers found it difficult to generate the complex 
new functions that were included to help close the 
“semantic gap.” Optimizing compilers subsetted ar- 
chitectures because they removed so many of the 
unknowns at compiler time that they rarely needed 
the powerful instructions at run time. 

WRITABLE CONTROL STORE 
One symptom of the general dissatisfaction with archi- 
tectural design principles at this time was the flurry of 
work in writable control memory, or writable control 
store (WCS). Researchers observed that microcoded ma- 
chines could not run faster than 1 microcycle per in- 
struction, typically averaging 3 or 4 microcycles per 
instruction; yet the simple operations in many pro- 
grams could be found directly in microinstructions. As 
long as machines were too complicated to be imple- 
mented by ROMs, why not take advantage of RAMS by 
loading different microprograms for different applica- 
tions? 

One of the first problems was to provide a program- 
ming environment that could simplify the task of writ- 

VAX and the 432. Note how much larger the control memo- 
ries were than the cache memories. 

ing microprograms, since microprogramming was the 
most tedious form of machine-language programming. 
Many researchers, including myself, built compilers 
and debuggers for microprogramming. This was a for- 
midable assignment, for virtually no inefficiencies 
could be tolerated in microcode. These demands led to 
the invention of new programming languages for micro- 
programming and new compiler techniques. 

Unfortunately for me and several other researchers, 
there were three more impediments that kept WCSs 
from being very popular. (Although a few machines 
offer WCS as an option today, it is unlikely that more 
than one in a thousand programmers take this option.) 
These impediments were 

Virtual memory complications. Once computers 
made the transition from physical memory to vir- 
tual memory, microprogrammers incurred the 
added difficulty of making sure that any routine 
could start over if any memory operand caused a 
virtual memory fault. 
Limited address space. The most difficult program- 
ming situation occurs when a program must be 
forced to fit in too small a memory. With control 
memories of 4096 words or less, some unfortunate 
WCS developers spent more time squeezing space 
from the old microcode than they did writing the 
new microcode. 
Swapping in u multiprocess environment. When each 
program has its own microcode, a multiprocess op- 
erating system has to reload the WCS on each proc- 
ess switch. Reloading time can range from 1,000 to 
25,000 memory accesses, depending on the ma- 
chine. This added overhead decreased the perform- 
ance benefits gained by going to a WCS in the first 
place. 

These last two difficulties led some researchers to con- 
clude that future computers would have to have virtual 
control memory, which meant that page faults could 
occur during microcode execution. The distinction be- 
tween programming and microprogramming was be- 
coming less and less clear. 

10 Communications of the ACM jama y 1985 Volume 28 Number 1 



THE ORIGINS OF RISCS 
About this point, several people, including those who 
had been working on microprogramming tools, began to 
rethink the architectural design principles of the 1970s. 
In trying to close the “semantic gap,” these principles 
had actually introduced a “performance gap.” The at- 
tempt to bridge this gap with WC% was unsuccessful, 
although the motivation for WCS-that instructions 
should be no faster than microinstructions and that 
programmers should write simple operations that map 
directly onto microinstructions-was still valid. Fur- 
thermore, since caches had allowed “main” memory 
accesses at the same speed as control memory accesses, 
microprogramming no longer enjoyed a ten-to-one 
speed advantage. 

A new computer design philosophy evolved: Opti- 
mizing compilers could be used to compile “normal” 
programming languages down to instructions that were 
as unencumbered as microinstructions in a large vir- 
tual address space, and to make the instruction cycle 
time as fast as the technology would allow. These ma- 
chines would have fewer instructions-a reduced set- 
and the remaining instructions would be simple and 
would generally execute in one cycle--reduced instruc- 
tions-hence the name reduced instruction set computers 
(RISCs). RISCs inaugurated a new set of architectural 
design principles: 

Functions should be kept simple unless there is a very 
good reason to do otherwise. A new operation that 
increases cycle time by 10 percent must reduce the 
number of cycles by at least 10 percent to be worth 
considering. An even greater reduction might be 
necessary, in fact, if the extra development effort 
and hardware resources of the new function, as 
they impact the rest of the design, are taken into 
account. 
Microinstructions should not be faster than simple in- 
structions. Since cache is built from the same tech- 
nology as writable control store, a simple instruc- 
tion should be executed at the same speed as a 
microinstruction. 
Microcode is not magic. Moving software into mi- 
crocode does not make it better, it just makes it 
harder to change. To paraphrase the Turing Ma- 
chine argument, anything that can be done in a micro- 
coded machine can be done in assembly language in a 
simple machine. The same hardware primitives as- 
sumed by the microinstructions must be available 
in assembly language. The run-time library of a 
RISC has all the characteristics of a function in mi- 
crocode, except that it is easier to change. 
Simple decoding and pipelined execution are more im- 
portant than program size. Imagine a model in 
which the total work per instruction is broken into 
pieces, and different pieces for each instruction ex- 
ecute in parallel. At the peak rate a new instruction 
is started every cycle (Figure 2). This assembly-line 
approach performs at the rate determined by the 
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length of individual pieces rather than by the total 
length of all pieces. This kind of model gave rise to 
instruction formats that are simple to decode and to 
pipeline. 

5. Compiler technology should be used to simplify instruc- 
tions rather than to generate complex instructions. 
RISC compilers try to remove as much work as pos- 
sible at compile time so that simple instructions can 
be used. For example, RISC compilers try to keep 
operands in registers so that simple register-to- 
register instructions can be used. Traditional com- 
pilers, on the other hand, try to discover the ideal 
addressing mode and the shortest instruction for- 
mat to add the operands in memory. In general, the 
designers of RISC compilers prefer a register-to- 
register model of execution so that compilers can 
keep operands that will be reused in registers, 
rather than repeating a memory access or a calcula- 
tion. They therefore use LOADS and STORES to ac- 
cess memory so that operands are not implicitly 
discarded after being fetched, as in the memory-to- 
memory architecture (see Figure 3). 

COMMON RISC TRAITS 
We can see these principles in action when we look at 
some actual RISC machines: the 801 from IBM Re- 
search, the RISC I and the RISC II from the University 
of California at Berkeley, and the MIPS from Stanford 
University. 

All three RISC machines have actually been built 
and are working (see Figure 4). The original IBM 801 
was built using off-the-shelf MS1 ECL, whereas the 
Berkeley RISCs and the Stanford MIPS were built with 
custom NMOS VLSI. Table II shows the primary char- 
acteristics of these three machines. 

Although each project had different constraints and 
goals, the machines they eventually created have a 
great deal in common: 

1. Operations are register-to-register, with only LOAD and 
STORE accessing memory. Allowing compilers to 
reuse operands requires registers. When only LOAD 
and STORE instructions access memory, the in- 
struction set, the processor, and the handling of 
page faults in a virtual memory environment are 
greatly simplified. Cycle time is shortened as well. 

2. The operations and addressing modes are reduced. 
Operations between registers complete in one cycle, 
permitting a simpler, hardwired control for each 
RISC, instead of microcode. Multiple-cycle 
instructions such as floating-point arithmetic are 
either executed in software or in a special-purpose 
coprocessor. (Without a coprocessor, RISCs have 
mediocre floating-point performance.) 6nly two 
simple addressing modes, indexed and PC-relative, 
are provided. More complicated addressing modes 
can be synthesized from the simple ones. 

3. Instruction formats are simple and do not cross word 
boundaries. This restriction allows RISCs to re- 
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Pipelined execution gives a peak perform- 
ante of one instruction every step, so in this 
example the peak performance of the pipe- 
lined machine is about four times faster 
than the sequential version. This figure 
shows that the longest piece determines 

. . . the performance rate of the pipelined ma- 
. . . 

. . . . . . chine, so ideally each piece should take the 
same amount of time. The five pieces are 

time - 
the traditional steps of instruction execu- 
tion: instruction fetch (IF), instruction de- 
code (ID), operand fetch (OF), operand exe- 
cution (OE), and operand store (OS). 

FIGURE 2a. Execution of Three Instructions for Sequential and Pipelined Execution 

Pipelined with Data Interlock 

Data dependency 

These branches and data dependencies re- 
duce the average instruction rate to below 
peak. The instruction INC A cannot fetch 
operand A until the previous instruction 
ADD B, C, A finishes storing B + C into A, 
forcing a two-stage bubble in the pipeline. 
Branches delay the pipeline until the instruc- 
tion at the branch address can be fetched. 
A shorter pipeline would also shorten bub- 

Pipelined with Branch interlock 
bles, thereby making pipelining more effec- 
tive. 

Branch address dependency 

FIGURE 2b. Branches and Data Dependencies between Instructions Force Delays, or “Bubbles,” into Pipelines 

move instruction decoding time from the critical 
execution path. As Figure 5 shows, the Berkeley 
RISC register operands are always in the same place 
in the 32-bft word, so register access can take place 
simultaneously with opcode decoding. This re- 
moves the instruction decoding stage from the pipe- 
lined execution, making it more effective by 
shortening the pipeline (Figure 2b). Single-sized in- 

structions also simplify virtual memory, since they 
cannot be broken into parts that might wind up on 
different pages. 

4. RlSC branches avoid pipeline penalties. A branch in- 
struction in a pipelined computer will normally de- 
lay the pipeline until the instruction at the branch 
address is fetched (Figure 2b). Several pipelined 
machines have elaborate techniques for fetching 
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This new version assumes optimizing compiler technology temporary storage, which means that it must reload oper- 
for the sequence A c B + C; B c A + C; D + D - B. ands. The register-to-register architecture now appears to 
Note that the memory-to-memory architecture has no be the “best.” 

FIGURE 3. A New Version of the Architectural Metrics Presented in Figure 1 

the appropriate instruction after the branch, 
but these techniques are too complicated for RISCs. 
The generic RISC solution, commonly used in mi- 
croinstruction sets, is to redefine jumps so that they 
do not take effect until after the following instruc- 
tion; this is called the delayed branch. The delayed 
branch allows RISCs to always fetch the next in- 
struction during the execution of the current in- 
struction. The machine-language code is suitably 
arranged so that the desired results are obtained. 
Because RISCs are designed to be programmed in 
high-level languages, the programmer is not re- 
quired to consider this issue; the “burden” is car- 
ried by the programmers of the compiler, the op- 
timizer, and the debugger. The delayed branch also 
removes the branch bubbles normally associated 
with pipelined execution (see Figure 2b). Table III 
illustrates the delayed branch. 

RISC optimizing compilers are able to successfully 
rearrange instructions to use the cycle after the delayed 
branch more than 90 percent of the time. Hennessy has 
found that more than 20 percent of all instructions are 
executed in the delay after the branch. 

Hennessy also pointed out how the delayed branch 

illustrates once again the folly of architectural metrics. 
Virtually all machines with variable-length instructions 
use a buffer to supply instructions to the CPU. These 
units blindly fill the prefetch buffer no matter what 
instruction is fetched and thus load the buffer with 
instructions after a branch, despite the fact that these 
instructions will eventually be discarded. Since studies 
show that one in four VAX instructions changes the 
program counter, such variable-length instruction ma- 
chines really fetch about 20 percent more instruction 
words from memory than the architecture metrics 
would suggest. RISCs, on the other hand, nearly always 
execute something useful because the instruction is 
fetched after the branch. 

RISC VARIATIONS 
Each RISC machine provides its own particular varia- 
tions on the common theme. This makes for some in- 
teresting differences. 

Compiler Technology versus Register Windows 
Both IBM and Stanford pushed the state of the art in 
compiler technology to maximize the use of registers. 
Figure 6 shows the graph-coloring algorithm that is the 
cornerstone of this technology. 
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The IBM 801, above, was completed in 1979 and had a 
cycle time of 86 n>. It was built from off-the-shelf ECL. 
The RISC II, on the right, designed by Manolis Katevenis 
and Robert Sherburne, was designed in a four-micron 
single-level metal custom NMOS VLSI. This 41 ,OOO-tran- -- 
sistor chip worked the first time at 500 ns per 32-bit 
instruction. The small control area ass for onlv 10 
percent of the chip and is found in the upper right-hand 
corner. The RISC II was resealed and fabricated in three- 

micron NMOS. The resulting chip is 25 percent smaller 
than a 68000 and ran on first silicon at 330 ns per in- 
struction. The Stanford m shown on page 16, chip 
was fabricated using the same conservative NMOS archi- 
tecture and runs at 500 ns per instruction. TaOO- 
transistor chip has about the same chip area as the RISC 
II. On-chip memory management support plus the two- 
instruction-per-word format increase the control area of 
the MIPS. 

FIGURE 4. Photographs of the Hardware for Three RISC Machines 

The Berkeley team did not include compiler experts, 
so a hardware solution was implemented to keep oper- 
ands in registers. The first step was to have enough 
registers to keep all the local scalar variables and all 
the parameters of the current procedure in registers. 
Attention was directed to these variables because of 
two very opportune properties: Most procedures only 
have a few viriables (approximately a half-dozen), and 
these are heavily used (responsible for one-half to two- 
thirds of all dynamically executed references to oper- 
ands). Normally, it slows procedure calls when there 
are a great many registers. The solution was to have 
many sets, or windows, of registers, so that registers 
would not have to be saved on every procedure call 
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and restored on every return. A procedure call auto- 
matically switches the processor to use a fresh set of 
registers. Such buffering can only work if programs nat- 
urally behave in a way that matches the buffer. Caches 
work because programs do not normally wander ran- 
domly about the address space. Similarly, through ex- 
perimentation, a locality of procedure nesting was 
found; programs rarely execute a long uninterrupted 
sequence of calls followed by a long uninterrupted se- 
quence of returns. Figure 7 illustrates this nesting be- 
havior. To further improve performance, the Berkeley 
RISC machines have a unique way of speeding up pro- 
cedure calls. Rather than copy the parameters from one 
window to another on each call, windows are over- 

/amary 1985 Volume 28 Number 1 



Articles 

lapped so that some registers are simultaneously part of 
two windows. By putting parameters into the overlap- 
ping registers, operands are passed automatically. 

What is the “best” way to keep operands in registers? 
The disadvafitages of register windbws are that ther 
use more chip area and slow the basic clock cycle. This 
is due to the capacitive loading of the longer bus, and 
although context. switches rarely occur--about 100 to 
1000 procedure calls for every switch-they require 
that two to three times as many registers be saved, on 
average. The only drawbacks of the optimizing com- 
piler are that it is about half the speed of a simple 
compiler and ignores the register-saving penalty of pro- 
cedure calls. Both the 801 and the MIPS mitigate this 
call cost by expanding some procedures in-line, al- 
though this means these machines cannot provide sepa- 
rate compilation of those procedures. If compiler tech- 
nology can reduce the number of LOADS and STORES 
to the extent that register windows can, the optimizing 
compiler will stand in clear superiority. About 30 per- 
cent o! the 801 mstructlons are LOAD or STORE when 

large programs are run; the MIPS has 16 registers com- 
pared to 32 for the 801, about 35 percent of them being 
LOAD or STORE instructions. For the Berkeley RISC 
machines, this percentage drops to about 15 percent, 
including the LOADS and STORES used to save and 
restore registers when the register-window buffer over- 
flows. 

Delayed Loads and Multiple Memory and Register Ports 
Since it takes one cycle to calculate the address and 
one cycle to access memory, the straightforward way to 
implement LOADS and STORES is to take two cycles. 
This is what we did in the Berkeley RISC architecture. 
To reduce the costs of memory accesses, both the 801 
and the MIPS provide “one-cycle” LOADS by following 
the style of the delayed branch. The first step is to have 
two ports to memory, one for instructions and one for 
data, plus a second write port to the registers. Since the 
address must still be calculated in the first cycle and 
the operand must still be fetched during the second 
cycle, the data are not available until the third cycle. 
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Therefore, the instruction executed following the one- 
cycle LOAD must not rely on the operand coming from 
memory. The 801 and the MIPS solve this problem with 
a delayed load, which is analogous to the delayed branch 
described above. The two compilers are able to put an 
independent instruction in the extra slot about 90 per- 
cent of the time. Since the Berkeley RISC executes 
many fewer LOADS, we decided to bypass the extra 
expense of an extra memory port and an extra register 
write port. Once again, depending on goals and imple- 
mentation technology, either approach can be justified. 

Pipelines 
All RISCs use pipelined execution, but the length of the 
pipeline and the approach to removing pipeline bubbles 
vary. Since the peak pipelined execution rate is deter- 
mined by the longest piece of the pipeline, the trick is 
to find a balance between the four parts of a RISC 

16 Communications of the ACM 

TABLE II. Primary Characteristics of 
Three Operational RISC Machines 

IBM 801 RISC I MIPS 

Year 1980 1982 1983 

Number of 
instructions 120 39 55 

Control memory 
size 0 0 0 

Instruction 
sizes (bits) 32 32 32 

Technology ECL MSI NMOS VLSI NMOS VLSI 

Execution model reg-reg reg-reg reg-reg 

None of these machines use microprogramming; all three use 
32-bit instructions and follow the register-to-register execution 
model. Note that the number of instructions in each of these 
machines is significantly lower than for those in Table I. 
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Although variable-sized instructions improve 
the architectural metrics in Figure 1, they also 
make instruction decoding more expensive and 
thus may not be good predictors of per-form- 
ante. Three machines-the RISC I, the VAX, 
and the 432-are compared for the instruction 
sequenceA+B+C;A+A+l;D+D-B. 
VAX instructions are byte variable from 16 to 
456 bits, with an average size of 30 bits. Oper- 
and locations are not part of the main opcode 
but are spread throughout the instruction. The 
432 has bit-variable instructions that range 
from 6 to 321 bits. The 432 also has multipart 
opcodes: The first part gives the number of 
operands and their location, and the second 
part gives the operation. The 432 has no regis- 
ters, so all operands must be kept in memory. 
The specifier of the operand can appear any- 
where in a 32-bit instruction word in the VAX or 
the 432. The RISC I instructions are always 32 
bits long, they always have three operands, 
and these operands are always specified in the 
same place in the instruction. This allows over- 
lap of instruction decoding with fetching the op- 
erand. This technique has the added benefit of 
removing a stage from the execution pipeline. 

FIGURE 5. Three Machines Are Compared for the Instruction Sequence A c B + C; A c A + 1; D c D - B 

instruction execution: 

1. instruction fetch, 
2. register read, 
3. arithmetic/logic operation, and 
4. register write. 

The 801 assumes that each part takes the same amount 
of time, and thus uses a four-stage pipeline. We at 
Berkeley assumed that instruction fetch was equal to 
the sun. of register read and the arithmetic/logic opera- 
tion, and thus selected the three-stage pipeline shown 
in Figtue 8. 

The biggest difference is in handling instruction se- 
quences that cause bubbles in a pipeline. For example, 
the first instruction in Figure 2b stores a result in A, 

which the following instruction needs to read. In most 
machines this forces the second instruction to delay 
execution until the first one completes storing its re- 
sult. The 801 and the RISC II avoid inserting a bubble 
by means of an internal forwarding technique that 
checks operands and automatically passes the result of 
one instruction to the next. 

The MIPS, in contrast, uses software to prevent inter- 
locks from occurring; this, in fact, is what prompted the 
machine’s name: Microprocessor without Interlocked 
Pipelined Stages. A routine passes over the output of 
the assembler to ensure that there cannot be conflicts. 
NO-OPs are inserted when necessary, and the optimiz- 
ing compiler tries to shuffle instructions to avoid exe- 
cuting them. Traditional pipelined machines can spend 
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TABLE III. A Comparison of the Traditional Branch Instruction with the Delayed Branch Found in RISC Machines 

Address Normal branch Delayed branch 

100 
101 
102 
103 
104 
105 
106 

LOAD X,A 
ADD l,A 
JUMP 105 
ADD A,B 
SUB C,B 
STORE A,Z 

LOAD X,A 
ADD l,A 
JUMP 106 
NO-OP 
ADD A,B 
SUB C,B 
STORE A,Z 

delaied branch 

LOAD X,A 
JUMP 105 
ADD %A 
ADD A,B 
SUB C,B 
STORE A,Z 

The delayed branch is used to avoid a branch dependency 
bubble in the pipeline (Figure 2b). Machines with normal 
branches would execute the sequence 100, 101,102, 
105,. . To get that same effect with a RISC computer, it 
would be necessary to insert a NO-OP in the Delayed branch 
column. The sequence of instructions for RlSCs would then 
be 100, 101, 102, 703, 106,. . . In the worst case, every 
branch would take two instructions. The RISC compilers, 
however, include optimizers that try to rearrange the se- 

a fair amount of their clock cycle detecting and block- 
ing interlocks, but the simple pipeline and register 
model of RISCs also simplifies interlocking. Hennessy 
believes the MIPS cycle would be lengthened by 10 
percent if hardware interlocking were added. The de- 
signers of the RISC II measured the internal forwarding 
logic and found that careful hardware design prevented 

A B C D E F G 

instr 0 
instr 1 Q 

? 

instr 2 

0 

0 A 
0 

Q 

IBM’s solution was to deal with register allocation accord- 
ing to the rules prescribed for painting a directed graph 
with a fixed number of colors. Each color represents one 
of the machine registers. The simultaneous lifetimes of A 
through G are shown, from first use to last. Here we 
assume only four registers, so the problem is to map the 
seven variables into the four registers. This is equivalent 
to painting the graph with only four colors. 

We start by mapping the first four variables onto the four 
colors. Variable E does not conflict with variable A, so 
they can share the same color, in this case RED. Simi- 
larly, F can share BLUE with C. With G all four colors are 
used, so the compiler must use LOADS and STORES to 
free a register to make space for G. 

FIGURE 6a. IBM’s Solution to the Register Allocation Problem FIGURE 6b. A Partial Solution to Register Allocation 

quence of instructions to do the equivalent operations while 
making use of the instruction slot where the NO-OP appears. 
The Optimized delayed branch column shows that the opti- 
mized RISC sequence is 100,101, 702,105,. . . . Because 
the instruction following a branch is always executed and the 
branch at 101 is not dependent on the add at 102 (in this 
example), this sequence is equivalent to the original program 
segment in the Normal branch column. 

forwarding from lengthening the RISC II clock cycle. 

Multiple Instructions per Word 
The designers of the MIPS tried an interesting variation 
on standard RISC philosophy by packing two instruc- 
tions into every 32-bit word whenever possible. This 
improvement could potentially double performance if 

RED BLACK BLUE GREEN 

instr 0 A 
( 

instr 1 

instr 2 

0 

0 
x 

A 

0 

E 

8 E 

( 

C 

x 
C 

??? 
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time 
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This (graph shows the call-return behavior of programs 
that inspired the register window scheme used by the 
Berkeley RISC machines. Each call causes the line to 
move, down and to the right, and each return causes the 
line to move up and to the right. The rectangles show 
how long the machine stays within the buffer. The longest 

case is 33 calls and returns (t = 33) inside the buffer. In 
this figure we assume that there are five windows 
(w = 5). We have found that about eight windows hits the 
knee of the curve and that locality of nesting is found in 
programs written in C, Pascal, and Smalltalk. 

FIGURE 7. The Call-Return Behavior of Programs 

twice as many operations were executed for every 32- 
bit instruction fetch. Since memory-access instructions 
and jump instructions generally need the full %bit 
word, and since data dependencies prevented some 
combinations, most programs were sped up by 10 to 15 
percent Arithmetic routines written in assembly lan- 
guage had much higher savings. Hennessy believes the_ 
two-insi ruction-per-word format adds 10 percent to t& 
Mmcqcle time because of the more complicated de- 

coding. He does not plan to use the two-instruction-per- 
word technique in his future designs. -- 

HIDDEN RISCS 
If building a new computer around a reduced instruc- 
tion set results in a machine with a better price/per- 
formance ratio, what would happen if the same tech- 
niques were used on the RISC subset of a traditional 
machine? This interesting question has been explored 

(if instr i + 1 needs data from instr i) 

i+l IF 

pipeline data forwarding 
(if i+ 2 needs i+ l’s data) 

111.1. 

i+2 
I 

WRITE 
11.1.. 

The memory is kept busy 100 percent of the time, the time. The short pipeline and pipeline data forwarding al- 
regist 3r file is reading or writing 100 percent of the time, low the RISC II to avoid pipeline bubbles when data de- 
and the execution unit (ALU) is busy 50 percent of the pendencies like those shown in Figure 2b are present. 

FIGURE 8. The Three-Stage Pipeline of the RISC II 
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by RISC advocates and, perhaps unintentionally, by the 
designers of more traditional machines. 

DEC reported a subsetting experiment on two imple- 
mentations of the VAX architecture in VLSI. The VLSI 
VAX has nine custom VLSI chips and implements the 
complete VAX-11 instruction set. DEC found that 20.0 
percent of the instructions are responsible for 60.0 per- 
cent of the microcode and yet are only 0.2 percent of all 
instructions executed. By trapping to software to exe- 
cute these instructions, the MicroVAX 32 was able to fit 
the subset architecture into only one chip, with an op- 
tional floating-point coprocessor in another chip. As 
shown in Table IV, the VLSI VAX, a VLSI implementa- 
tion of the full VAX architecture, uses five to ten times 
the resources of the MicroVAX 32 to implement the full 
instruction set, yet is only 20 percent faster. 

Michael L. Powell of DEC obtained improved per- 
formance by subsetting the VAX architecture from the 
software side. His experimental DEC Modula-2 com- 
piler generates code that is comparable in speed to the 
best compilers for the VAX, using only a subset of the 
addressing modes and instructions. This gain is in part 
due to the fact that optimization reduces the use of 
complicated modes. Often only a subset of the func- 
tions performed by a single complicated instruction is 
needed. The VAX has an elaborate CALL instruction, 
generated by most VAX compilers, that saves registers 
on procedure entry. By replacing the CALL instruction 
with a sequence of simple instructions that do only 
what is necessary, Powell was able to improve perform- 
ance by 20 percent. 

The IBM S/360 and S/370 were also targets of RISC 
studies. The 360 model 44 can be considered an ances- 
tor of the MicroVAX 32, since it implements only a 
subset of the 360 architecture in hardware. The rest of 
the instructions are implemented by software. The 
360/44 had a significantly better cost/performance ra- 
tio than its nearest neighbors. IBM researchers per- 
formed a software experiment by retargetting their 
highly optimizing PL/8 compiler away from the 801 to 
the System/370. The optimizer treated the 370 as a 
register-to-register machine to increase the effective- 
ness of register allocation. This subset of the 370 ran 
programs 50 percent faster than the previous best opti- 

TABLE IV. Two VLSI Implementations of the VAX 

-. 
VLSI Chips (including 

floating point) 9 (22%) 
Microcode 45OK 
Transistors 1250K 1OlK ‘::I 00 

These two implementations, although not yet in pro&Jots, illus- 
trate the difficulty of building the complete VAX architacture in 
VLSI. The VLSI VAX is 20 percent faster than thl MirxoVAX 32 
but uses five to ten times the resources for the prooessor. Both 
are implemented from the same three;micron double-level metal 
NMOS technology. (The VLSI VAX also has extem?datl? and 
address caches not counted in this table.) 

mizing compiler that used the full 370 instruction set. 
Software and hardware experiments on subsets of the 

VAX and IBM 360/370, then, seem to support the RISC 
arguments. 

ARCHITECTURAL HERITAGE 
All RISC machines borrowed good ideas from old ma- 
chines, and we hereby pay our respects to a long line of 
architectural ancestors. In 1946, before the first digital 
computer was operational, von Neumann wrote 

The really decisive considerations from the present point of 
view, in selecting a code [instruction set], are more of a 
practical nature: the simplicity of the equipment demanded 
by the code, and the clarity of its application to the actually 
important problems together with the speed of its handling 
of those problems.’ 

For the last 25 years Seymour Cray has been quietly 
designing register-based computers that rely on LOADS 
and STORES while using pipelined execution. James 
Thornton, one of his colleagues on the CDC-6600, wrote 
in 1963 

The simplicity of all instructions allows quick and simple 
evaluation of status to begin execution. . Adding complica- 
tion to a special operation, therefore, degrades all the others. 

and also 

In my mind, the greatest potential for improvement is with 
the internal methods. .at the risk of loss of fringe opera- 
tions. The work to be done is really engineering work, pure 
and simple. As a matter of fact, that’s what the results 
should be-pure and simple.3 

John Cocke developed the idea of pushing compiler 
technology with fast, simple instructions for text and 
integer applications. The IBM 801 project, led by 
George Radin, began experimenting with these ideas in 
1975 and produced an operational ECL machine in 
1979. The results of this project could not be published, 
however, until 1982. 

In 1980 we started the RISC project at Berkeley. We 
were inspired by an aversion to the complexity of the 
VAX and Intel 432, the lack of experimental evidence 
in architecture research, rumors of the 801, and the 
desire to build a VLSI machine that minimized design 
effort while maximizing the cost/performance factor. 
We combined our research with course work to build 
the RISC I and RISC II machines. 

In 1981 John Hennessy started the MIPS project, 
which tried to extend the state of the art in compiler 
optimization techniques, explored pipelined tech- 
niques, and used VLSI to build a fast microcomputer. 

Both university projects built working chips using 
much less manpower and time than traditional micro- 
processors. 

* Burks. A.W.. Goldstine. H.H.. and van Neumann. 1. Preliminarv discussion of 
the logical design of an electronic computing instr&ent. Rep. to U.S. Army 
Ordinance Dept., 1946. 
‘Thornton, J.E. Considerations in Computer Design-Leading Up to the Control 
Data 6600. Control Data Chippewa Laboratory, 1963. 
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CONCHJSIONS 
In my lliew, the remaining technical difficulty is how to 
get good floating-point performance from RISCs. The 
RISCs mentioned here have mediocre floating-point 
performance without special hardware assists. Another 
issue is whether RISCs will provide the same advan- 
tages in the cost/performance factor for exploratory 
programming environments such as Lisp and Smalltalk. 
Initial experiments are promising. 

I believe the split between architecture and imple- 
mentation has caused architects to ignore the imple- 
mentation consequences of architecture decisions, 
which has led to “good” architectures with disappoint- 
ing implementations. Complex architecture requires 
lengthy. development cycles, and long development cy- 
cles using implementation technologies that routinely 
double in speed and capacity can potentially mean pro- 
ducing a computer in an antiquated technology. RISCs 
reduce this danger. 

Simple machines can also dramatically simplify de- 
sign ve::ification. As things stand now, it can take a 
year or two to discover all the important design flaws 
in a mainframe. VLSI technology will soon allow a 
single-c:hip computer to be built that is as complicated 
as a mainframe. Unfortunately, VLSI manufacturing 
will also produce hundreds of thousands of computers 
in the time it takes to debug a mainframe in the field. 
RISC machines offer the best chance of heading off 
“compc ter recall” as a new step in the development 
cycle. 

A final observation: Technology runs in cycles, so 
trade-o:!fs in instruction set design will change over 
time, if there is change in the balance of speeds in 
memory and logic. Designers who reconcile architec- 
ture with implementation will reduce their RISCs. 
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Further Reading. Items [I, 4, 91 should provide a good 
introdul:tion to RISCs for the general reader. The re- 
maining references may help to explain some of the 
ideas presented in this paper in greater depth. The IBM 
801 is described in [12], while the two papers by Martin 
Hopkins of IBM [5, 61 provide historical and philosophi- 

cal perspective on RISC machines. The IBM graph- 
coloring algorithm is found in [2], and the subsetted use 
of one instruction set in [8]. The primary reference for 
the Berkeley RISC machines is [ll], although [lo] con- 
tains the latest information on performance of the 
RISC II and [7] a thorough explanation of the motiva- 
tion for RISCs in general and the RISC II in particular. 
An attempt to use RISCs in an exploratory program- 
ming environment, in this case the object-oriented 
Smalltalk system, is described in [13]. Joseph Fisher, a 
Writable Control Store refugee like myself, is now 
working on compiling “normal” programming languages 
into very wide instructions (or horizontal microinstruc- 
tions, depending on your perspective) for a high-per- 
formance multiple arithmetic unit computer [3]. 
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