
ARTICLES

REDUCED INSTRUCTION SET COMPUTERS

Reduced instruction set computers aim for both simplicity in hardware and
synergy between architectures and compilers. Optimizing compilers are used
to compile programming languages down to instructions that are as
unencumbered as microinstructions in a large virtual address space, and to
make the instruction cycle time as fast as possible.

DAVID A. PATTERSON

As circuit technologies reduce the relative cost of proc-
essing and memory, instruction sets that are too com-
plex become a distinct liability to performance. The
designers of reduced instruction set computers (RISCs)
strive for both simplicity in hardware and synergy be-
tween architecture and compilers, in order to stream-
line processing as much as possible. Early experience
indicates that RISCs can in fact run much faster than
more conventionally designed machines.

BACKGROUND
The IBM System/360, first introduced in 1964, was the
real beginning of modern computer architecture. Al-
though computers in the System/360 “family” provided
a different level of performance for a different price, all
ran identical software. The System/360 originated the
distinction between computer architecture-the abstract
structure of a computer that a machine-language pro-
grammer needs to know to write programs-and the
hardware implementation of that structure. Before the
System/BBO, architectural trade-offs were determined
by the effect on price and performance of a single im-
plementation: henceforth, architectural trade-offs be-
came more esoteric. The consequences of single imple-
mentations would no longer be sufficient to settle an
argument about instruction set design.

Microprogiamming was the primary technological
innovation behind this marketing concept. Micropro-
gramming relied on a small control memory and was an
elegant way of buil.ding the processor control unit for a
large instruction set. Each word of control memory is

0 1985 ACM OOOl-0782/85/0100-0008 75~

called a microinstruction, and the contents are essen-
tially an interpreter, programmed in microinstructions.
The main memories of these computers were magnetic
core memories, the small control memories of which
were usually 10 times faster than core.

Minicomputer manufacturers tend to follow the lead
of mainframe manufacturers, especially when the
mainframe manufacturer is IBM, and so microprogram-
ming caught on quickly. The rapid growth of semicon-
ductor memories also speeded this trend. In the early
1970s. for example, 8192 bits of read-only memory
(ROM) took up no more space than 8 bits of register.
Eventually, minicomputers using core main memory
and semiconductor control memory became standard in
the minicomputer industry.

With the continuing growth of semiconductor mem-
ory, a much richer and more complicated instruction
set could be implemented. The architecture research
community argued for richer instruction sets. Let us
review some of the arguments they advanced at that
time:

1. Richer instruction sets would simplify compilers. As
the story was told, compilers were very hard to
build, and compilers for machines with registers
were the hardest of all. Compilers for architectures
with execution models based either on stacks or
memory-to-memory operations were much simpler
and more reliable.

2. Richer instruction sets would alleviate the software cri-
sis. At a time when software costs were rising as
fast as hardware costs were dropping, it seemed

8 Communications of the ACM Ianua y 1985 Volume 28 Number 1

Articles

3.

appropriate to move as much function to the hard-
ware as possible. The idea was to create machine
instructions that resembled programming language
statements, so as to close the “semantic gap” be-
tween programming languages and machine lan-
guages.
Richer instruction sets would improve architecture qual-
ity. After IBM differentiated architecture from im-
plementation, the research community looked for
ways to measure the quality of an architecture, as
opposed to the speed at which implementations
could run programs. The only architectural metrics
then widely recognized were program size, the
number of bits of instructions, and bits of data
fetched from memory during program execution
(see Figure 1).

Memory efficiency was such a dominating concern in
these metrics because main memory-magnetic core
memory-was so slow and expensive. These metrics
are partially responsible for the prevailing belief in the
1970s that execution speed was proportional to program
size. It even became fashionable to examine long lists of
instruction execution to see if a pair or triple of old
instructions could be replaced by a single, more power-
ful instruction. The belief that larger programs were
invariably slower programs inspired the invention of

8 4 16
.

: Load i rB : B

:
I

Load : rC i C
I

.
Add i rA 3

.

.
rf3 ! rC

I
:

.
Store : rA ! A

c . . I

I = 104b; D = 96b; M = 200b I = 72b; D = 96b; M = 168b
(Register-to-Register) (Memory-to-Register)

8 16 16 16

many exotic instruction formats that reduced program
size.

The rapid rise of the integrated circuit, along with
arguments from the architecture research community
in the 1970s led to certain design principles that guided
computer architecture:

The memo y technology used for microprograms was
growing rapidly, so large microprograms would add lit-
tle or nothing to the cost of the machine.
Since microinstructions were much faster than normal
machine instructions, moving software functions to mi-
crocode made for faster computers and more reliable
functions.
Since execution speed was proportional to program size,
architectural techniques that led to smaller programs
also led to faster computers.
Registers were old fashioned and made it hard to build
compilers; stacks or memory-to-memory architectures
were superior execution models. As one architecture re-
searcher put it in 1978, “One’s eyebrows should rise
whenever a future architecture is developed with a
register-oriented instruction set.“’

Computers that exemplify these design principles are
the IBM 370/168, the DEC VAX-11/780, the Xerox
’ Myers, G.). The case against stack-oriented instruction sets. Comput. Archit.
News 6. 3 (Aug. 1977). 7-10.

8
.

Load i

:
Add :

.

Store I

16

B

C

A

. .
Add :

:
B : . C . . A

. . I I

I = 56b; D = 96b; M = 152b
(Memory-to-Memory)

In this example, the three data words are 32 bits each
and the address field is 16 bits. Metrics were selected by
research architects for deciding which architecture is
best; they selected the total size of executed instructions
(I), the total size of executed data (D), and the total mem-
ory traffic-that is, the sum of I and D, which is (M).

These metrics suggest that a memory-to-memory archi-
tecture is the “best” architecture, and a register-to-regis-
ter architecture the “worst.” This study led one research
architect in 1978 to suggest that future architectures
should not include registers.

FIGURE 1. The Statement A c B + C Translated into Assembly Language for Three Execution Models: Register-to-Register,
Memory-to-Register, and Memory-to-Memory

fanua y 1985 Volume 28 Number 1 Communications of the ACM

Articles

Year
Number of instructions
Control memory size
Instruction sizes (bits)
Technology
Execution model

Cache size

TABLE I. Four Implementations of Modem Architectures

l8M 370/168 VAX-11/780 Dorado

1973 1978 1978
208 303 270

420 Kb 480 Kb 138 Kb
16-48 16-456 8-24

ECL MSI l-I-L MSI ECL MSI
reg-mem reg-mem stack

mem-mem mem-mem

44-w reg-reg
64 Kb 64 Kb 64 Kb

iAPX-432

1982
222

64 Kb
6-321

NMOS VLSI
stack

mem-mem

0

These four implementations, designed in the 197Os, all used
microprogramming. The emphasis on memory efficiency at
that time led to the varying-sized instruction formats of the

Dorado, and the Intel iAPX-432. Table I shows some of
the characteristics of these machines.

Although computer architects were reaching a con-
sensus on design principles, the implementation world
was changing around them:

Semiconductor memory was replacing core, which
meant that main memories would no longer be 10
times slower tha.n control memories.
Since it was virtually impossible to remove all mis-
takes for 400,000 bits of microcode, control store
ROMs were becoming control store RAMS.
Caches had been invented-studies showed that the
locality of programs meant that small, fast buffers
could make substantial improvement in the imple-
mentation speed. of an architecture. As Table I shows,
caches were included in nearly every machine,
though control memories were much larger than
cache memories.
Compilers were subsetting architectures-simple
compilers found it difficult to generate the complex
new functions that were included to help close the
“semantic gap.” Optimizing compilers subsetted ar-
chitectures because they removed so many of the
unknowns at compiler time that they rarely needed
the powerful instructions at run time.

WRITABLE CONTROL STORE
One symptom of the general dissatisfaction with archi-
tectural design principles at this time was the flurry of
work in writable control memory, or writable control
store (WCS). Researchers observed that microcoded ma-
chines could not run faster than 1 microcycle per in-
struction, typically averaging 3 or 4 microcycles per
instruction; yet the simple operations in many pro-
grams could be found directly in microinstructions. As
long as machines were too complicated to be imple-
mented by ROMs, why not take advantage of RAMS by
loading different microprograms for different applica-
tions?

One of the first problems was to provide a program-
ming environment that could simplify the task of writ-

VAX and the 432. Note how much larger the control memo-
ries were than the cache memories.

ing microprograms, since microprogramming was the
most tedious form of machine-language programming.
Many researchers, including myself, built compilers
and debuggers for microprogramming. This was a for-
midable assignment, for virtually no inefficiencies
could be tolerated in microcode. These demands led to
the invention of new programming languages for micro-
programming and new compiler techniques.

Unfortunately for me and several other researchers,
there were three more impediments that kept WCSs
from being very popular. (Although a few machines
offer WCS as an option today, it is unlikely that more
than one in a thousand programmers take this option.)
These impediments were

Virtual memory complications. Once computers
made the transition from physical memory to vir-
tual memory, microprogrammers incurred the
added difficulty of making sure that any routine
could start over if any memory operand caused a
virtual memory fault.
Limited address space. The most difficult program-
ming situation occurs when a program must be
forced to fit in too small a memory. With control
memories of 4096 words or less, some unfortunate
WCS developers spent more time squeezing space
from the old microcode than they did writing the
new microcode.
Swapping in u multiprocess environment. When each
program has its own microcode, a multiprocess op-
erating system has to reload the WCS on each proc-
ess switch. Reloading time can range from 1,000 to
25,000 memory accesses, depending on the ma-
chine. This added overhead decreased the perform-
ance benefits gained by going to a WCS in the first
place.

These last two difficulties led some researchers to con-
clude that future computers would have to have virtual
control memory, which meant that page faults could
occur during microcode execution. The distinction be-
tween programming and microprogramming was be-
coming less and less clear.

10 Communications of the ACM jama y 1985 Volume 28 Number 1

THE ORIGINS OF RISCS
About this point, several people, including those who
had been working on microprogramming tools, began to
rethink the architectural design principles of the 1970s.
In trying to close the “semantic gap,” these principles
had actually introduced a “performance gap.” The at-
tempt to bridge this gap with WC% was unsuccessful,
although the motivation for WCS-that instructions
should be no faster than microinstructions and that
programmers should write simple operations that map
directly onto microinstructions-was still valid. Fur-
thermore, since caches had allowed “main” memory
accesses at the same speed as control memory accesses,
microprogramming no longer enjoyed a ten-to-one
speed advantage.

A new computer design philosophy evolved: Opti-
mizing compilers could be used to compile “normal”
programming languages down to instructions that were
as unencumbered as microinstructions in a large vir-
tual address space, and to make the instruction cycle
time as fast as the technology would allow. These ma-
chines would have fewer instructions-a reduced set-
and the remaining instructions would be simple and
would generally execute in one cycle--reduced instruc-
tions-hence the name reduced instruction set computers
(RISCs). RISCs inaugurated a new set of architectural
design principles:

Functions should be kept simple unless there is a very
good reason to do otherwise. A new operation that
increases cycle time by 10 percent must reduce the
number of cycles by at least 10 percent to be worth
considering. An even greater reduction might be
necessary, in fact, if the extra development effort
and hardware resources of the new function, as
they impact the rest of the design, are taken into
account.
Microinstructions should not be faster than simple in-
structions. Since cache is built from the same tech-
nology as writable control store, a simple instruc-
tion should be executed at the same speed as a
microinstruction.
Microcode is not magic. Moving software into mi-
crocode does not make it better, it just makes it
harder to change. To paraphrase the Turing Ma-
chine argument, anything that can be done in a micro-
coded machine can be done in assembly language in a
simple machine. The same hardware primitives as-
sumed by the microinstructions must be available
in assembly language. The run-time library of a
RISC has all the characteristics of a function in mi-
crocode, except that it is easier to change.
Simple decoding and pipelined execution are more im-
portant than program size. Imagine a model in
which the total work per instruction is broken into
pieces, and different pieces for each instruction ex-
ecute in parallel. At the peak rate a new instruction
is started every cycle (Figure 2). This assembly-line
approach performs at the rate determined by the

Articles

length of individual pieces rather than by the total
length of all pieces. This kind of model gave rise to
instruction formats that are simple to decode and to
pipeline.

5. Compiler technology should be used to simplify instruc-
tions rather than to generate complex instructions.
RISC compilers try to remove as much work as pos-
sible at compile time so that simple instructions can
be used. For example, RISC compilers try to keep
operands in registers so that simple register-to-
register instructions can be used. Traditional com-
pilers, on the other hand, try to discover the ideal
addressing mode and the shortest instruction for-
mat to add the operands in memory. In general, the
designers of RISC compilers prefer a register-to-
register model of execution so that compilers can
keep operands that will be reused in registers,
rather than repeating a memory access or a calcula-
tion. They therefore use LOADS and STORES to ac-
cess memory so that operands are not implicitly
discarded after being fetched, as in the memory-to-
memory architecture (see Figure 3).

COMMON RISC TRAITS
We can see these principles in action when we look at
some actual RISC machines: the 801 from IBM Re-
search, the RISC I and the RISC II from the University
of California at Berkeley, and the MIPS from Stanford
University.

All three RISC machines have actually been built
and are working (see Figure 4). The original IBM 801
was built using off-the-shelf MS1 ECL, whereas the
Berkeley RISCs and the Stanford MIPS were built with
custom NMOS VLSI. Table II shows the primary char-
acteristics of these three machines.

Although each project had different constraints and
goals, the machines they eventually created have a
great deal in common:

1. Operations are register-to-register, with only LOAD and
STORE accessing memory. Allowing compilers to
reuse operands requires registers. When only LOAD
and STORE instructions access memory, the in-
struction set, the processor, and the handling of
page faults in a virtual memory environment are
greatly simplified. Cycle time is shortened as well.

2. The operations and addressing modes are reduced.
Operations between registers complete in one cycle,
permitting a simpler, hardwired control for each
RISC, instead of microcode. Multiple-cycle
instructions such as floating-point arithmetic are
either executed in software or in a special-purpose
coprocessor. (Without a coprocessor, RISCs have
mediocre floating-point performance.) 6nly two
simple addressing modes, indexed and PC-relative,
are provided. More complicated addressing modes
can be synthesized from the simple ones.

3. Instruction formats are simple and do not cross word
boundaries. This restriction allows RISCs to re-

lanuay 1985 Volume 28 Number 1 Communications of the ACM 11

Articles

. Sequential .

. . .

ii-i i ;
.

.
Pipelined

. . .

i+l ITlY+$$j i

.

.

.

i+2 ImI

. _
. . . I -

nn: : ;’
Pipelined execution gives a peak perform-
ante of one instruction every step, so in this
example the peak performance of the pipe-
lined machine is about four times faster
than the sequential version. This figure
shows that the longest piece determines

. . . the performance rate of the pipelined ma-
. . .

. chine, so ideally each piece should take the
same amount of time. The five pieces are

time -
the traditional steps of instruction execu-
tion: instruction fetch (IF), instruction de-
code (ID), operand fetch (OF), operand exe-
cution (OE), and operand store (OS).

FIGURE 2a. Execution of Three Instructions for Sequential and Pipelined Execution

Pipelined with Data Interlock

Data dependency

These branches and data dependencies re-
duce the average instruction rate to below
peak. The instruction INC A cannot fetch
operand A until the previous instruction
ADD B, C, A finishes storing B + C into A,
forcing a two-stage bubble in the pipeline.
Branches delay the pipeline until the instruc-
tion at the branch address can be fetched.
A shorter pipeline would also shorten bub-

Pipelined with Branch interlock
bles, thereby making pipelining more effec-
tive.

Branch address dependency

FIGURE 2b. Branches and Data Dependencies between Instructions Force Delays, or “Bubbles,” into Pipelines

move instruction decoding time from the critical
execution path. As Figure 5 shows, the Berkeley
RISC register operands are always in the same place
in the 32-bft word, so register access can take place
simultaneously with opcode decoding. This re-
moves the instruction decoding stage from the pipe-
lined execution, making it more effective by
shortening the pipeline (Figure 2b). Single-sized in-

structions also simplify virtual memory, since they
cannot be broken into parts that might wind up on
different pages.

4. RlSC branches avoid pipeline penalties. A branch in-
struction in a pipelined computer will normally de-
lay the pipeline until the instruction at the branch
address is fetched (Figure 2b). Several pipelined
machines have elaborate techniques for fetching

12 Communications of the ACM januay 1985 Volume 28 Number 1

Articles

4 16

6 I LOAD
.

: rB 3

1 LOAD i rC . ;

STORE i rD : D
I

Reuse of Operands Compiler allocates Operands in Registers
I = 228b; D = 192b; M = 420b I = 60b; D = Ob; M = 60b

(Register-to-Register) (Register-to-Register)

8 16 16 16

A-B+C

B-A+C

D-D-B

ADD : B
.
: C . . A

ADD : A : C : B

SUB I B : D : D .

I = 168b; D = 28813; M = 456b
(Memory-to-Memory)

This new version assumes optimizing compiler technology temporary storage, which means that it must reload oper-
for the sequence A c B + C; B c A + C; D + D - B. ands. The register-to-register architecture now appears to
Note that the memory-to-memory architecture has no be the “best.”

FIGURE 3. A New Version of the Architectural Metrics Presented in Figure 1

the appropriate instruction after the branch,
but these techniques are too complicated for RISCs.
The generic RISC solution, commonly used in mi-
croinstruction sets, is to redefine jumps so that they
do not take effect until after the following instruc-
tion; this is called the delayed branch. The delayed
branch allows RISCs to always fetch the next in-
struction during the execution of the current in-
struction. The machine-language code is suitably
arranged so that the desired results are obtained.
Because RISCs are designed to be programmed in
high-level languages, the programmer is not re-
quired to consider this issue; the “burden” is car-
ried by the programmers of the compiler, the op-
timizer, and the debugger. The delayed branch also
removes the branch bubbles normally associated
with pipelined execution (see Figure 2b). Table III
illustrates the delayed branch.

RISC optimizing compilers are able to successfully
rearrange instructions to use the cycle after the delayed
branch more than 90 percent of the time. Hennessy has
found that more than 20 percent of all instructions are
executed in the delay after the branch.

Hennessy also pointed out how the delayed branch

illustrates once again the folly of architectural metrics.
Virtually all machines with variable-length instructions
use a buffer to supply instructions to the CPU. These
units blindly fill the prefetch buffer no matter what
instruction is fetched and thus load the buffer with
instructions after a branch, despite the fact that these
instructions will eventually be discarded. Since studies
show that one in four VAX instructions changes the
program counter, such variable-length instruction ma-
chines really fetch about 20 percent more instruction
words from memory than the architecture metrics
would suggest. RISCs, on the other hand, nearly always
execute something useful because the instruction is
fetched after the branch.

RISC VARIATIONS
Each RISC machine provides its own particular varia-
tions on the common theme. This makes for some in-
teresting differences.

Compiler Technology versus Register Windows
Both IBM and Stanford pushed the state of the art in
compiler technology to maximize the use of registers.
Figure 6 shows the graph-coloring algorithm that is the
cornerstone of this technology.

lanuary 1985 Volume 28 Number 1 Communications of the ACM 13

Arficles

The IBM 801, above, was completed in 1979 and had a
cycle time of 86 n>. It was built from off-the-shelf ECL.
The RISC II, on the right, designed by Manolis Katevenis
and Robert Sherburne, was designed in a four-micron
single-level metal custom NMOS VLSI. This 41 ,OOO-tran- --
sistor chip worked the first time at 500 ns per 32-bit
instruction. The small control area ass for onlv 10
percent of the chip and is found in the upper right-hand
corner. The RISC II was resealed and fabricated in three-

micron NMOS. The resulting chip is 25 percent smaller
than a 68000 and ran on first silicon at 330 ns per in-
struction. The Stanford m shown on page 16, chip
was fabricated using the same conservative NMOS archi-
tecture and runs at 500 ns per instruction. TaOO-
transistor chip has about the same chip area as the RISC
II. On-chip memory management support plus the two-
instruction-per-word format increase the control area of
the MIPS.

FIGURE 4. Photographs of the Hardware for Three RISC Machines

The Berkeley team did not include compiler experts,
so a hardware solution was implemented to keep oper-
ands in registers. The first step was to have enough
registers to keep all the local scalar variables and all
the parameters of the current procedure in registers.
Attention was directed to these variables because of
two very opportune properties: Most procedures only
have a few viriables (approximately a half-dozen), and
these are heavily used (responsible for one-half to two-
thirds of all dynamically executed references to oper-
ands). Normally, it slows procedure calls when there
are a great many registers. The solution was to have
many sets, or windows, of registers, so that registers
would not have to be saved on every procedure call

14 Communications of the ACM

and restored on every return. A procedure call auto-
matically switches the processor to use a fresh set of
registers. Such buffering can only work if programs nat-
urally behave in a way that matches the buffer. Caches
work because programs do not normally wander ran-
domly about the address space. Similarly, through ex-
perimentation, a locality of procedure nesting was
found; programs rarely execute a long uninterrupted
sequence of calls followed by a long uninterrupted se-
quence of returns. Figure 7 illustrates this nesting be-
havior. To further improve performance, the Berkeley
RISC machines have a unique way of speeding up pro-
cedure calls. Rather than copy the parameters from one
window to another on each call, windows are over-

/amary 1985 Volume 28 Number 1

Articles

lapped so that some registers are simultaneously part of
two windows. By putting parameters into the overlap-
ping registers, operands are passed automatically.

What is the “best” way to keep operands in registers?
The disadvafitages of register windbws are that ther
use more chip area and slow the basic clock cycle. This
is due to the capacitive loading of the longer bus, and
although context. switches rarely occur--about 100 to
1000 procedure calls for every switch-they require
that two to three times as many registers be saved, on
average. The only drawbacks of the optimizing com-
piler are that it is about half the speed of a simple
compiler and ignores the register-saving penalty of pro-
cedure calls. Both the 801 and the MIPS mitigate this
call cost by expanding some procedures in-line, al-
though this means these machines cannot provide sepa-
rate compilation of those procedures. If compiler tech-
nology can reduce the number of LOADS and STORES
to the extent that register windows can, the optimizing
compiler will stand in clear superiority. About 30 per-
cent o! the 801 mstructlons are LOAD or STORE when

large programs are run; the MIPS has 16 registers com-
pared to 32 for the 801, about 35 percent of them being
LOAD or STORE instructions. For the Berkeley RISC
machines, this percentage drops to about 15 percent,
including the LOADS and STORES used to save and
restore registers when the register-window buffer over-
flows.

Delayed Loads and Multiple Memory and Register Ports
Since it takes one cycle to calculate the address and
one cycle to access memory, the straightforward way to
implement LOADS and STORES is to take two cycles.
This is what we did in the Berkeley RISC architecture.
To reduce the costs of memory accesses, both the 801
and the MIPS provide “one-cycle” LOADS by following
the style of the delayed branch. The first step is to have
two ports to memory, one for instructions and one for
data, plus a second write port to the registers. Since the
address must still be calculated in the first cycle and
the operand must still be fetched during the second
cycle, the data are not available until the third cycle.

January 1985 Volume 28 Number 1 Communications of the ACM 15

Articles

Therefore, the instruction executed following the one-
cycle LOAD must not rely on the operand coming from
memory. The 801 and the MIPS solve this problem with
a delayed load, which is analogous to the delayed branch
described above. The two compilers are able to put an
independent instruction in the extra slot about 90 per-
cent of the time. Since the Berkeley RISC executes
many fewer LOADS, we decided to bypass the extra
expense of an extra memory port and an extra register
write port. Once again, depending on goals and imple-
mentation technology, either approach can be justified.

Pipelines
All RISCs use pipelined execution, but the length of the
pipeline and the approach to removing pipeline bubbles
vary. Since the peak pipelined execution rate is deter-
mined by the longest piece of the pipeline, the trick is
to find a balance between the four parts of a RISC

16 Communications of the ACM

TABLE II. Primary Characteristics of
Three Operational RISC Machines

IBM 801 RISC I MIPS

Year 1980 1982 1983

Number of
instructions 120 39 55

Control memory
size 0 0 0

Instruction
sizes (bits) 32 32 32

Technology ECL MSI NMOS VLSI NMOS VLSI

Execution model reg-reg reg-reg reg-reg

None of these machines use microprogramming; all three use
32-bit instructions and follow the register-to-register execution
model. Note that the number of instructions in each of these
machines is significantly lower than for those in Table I.

Ianuary 1985 Volume 28 Number I

Articles

I 32b memory port ,

OP : DEST : SOUR1 : ! souR2:

I

: :
ADD : rA I

.

RISC I

I ; : i
SUB : rD : rD :

register :

: . : operand 5 rB I

I 32b memory port 4

ADD : register B 5 :
(3 operands) i operand

register
operand ’ i

register
! operand

A

.
VAX INC ; register SUB : register :

(1 operand) , operand A
.

(2 operands) i operand B i
.

.
:
:

register A

. operand

432

32b memory port I

!
i - T

3 operands : B : c... i
in memory : : .

. .

.~..............................~.w.......~
: :A : C A :D :

~~

.-..... ..s......
.

Although variable-sized instructions improve
the architectural metrics in Figure 1, they also
make instruction decoding more expensive and
thus may not be good predictors of per-form-
ante. Three machines-the RISC I, the VAX,
and the 432-are compared for the instruction
sequenceA+B+C;A+A+l;D+D-B.
VAX instructions are byte variable from 16 to
456 bits, with an average size of 30 bits. Oper-
and locations are not part of the main opcode
but are spread throughout the instruction. The
432 has bit-variable instructions that range
from 6 to 321 bits. The 432 also has multipart
opcodes: The first part gives the number of
operands and their location, and the second
part gives the operation. The 432 has no regis-
ters, so all operands must be kept in memory.
The specifier of the operand can appear any-
where in a 32-bit instruction word in the VAX or
the 432. The RISC I instructions are always 32
bits long, they always have three operands,
and these operands are always specified in the
same place in the instruction. This allows over-
lap of instruction decoding with fetching the op-
erand. This technique has the added benefit of
removing a stage from the execution pipeline.

FIGURE 5. Three Machines Are Compared for the Instruction Sequence A c B + C; A c A + 1; D c D - B

instruction execution:

1. instruction fetch,
2. register read,
3. arithmetic/logic operation, and
4. register write.

The 801 assumes that each part takes the same amount
of time, and thus uses a four-stage pipeline. We at
Berkeley assumed that instruction fetch was equal to
the sun. of register read and the arithmetic/logic opera-
tion, and thus selected the three-stage pipeline shown
in Figtue 8.

The biggest difference is in handling instruction se-
quences that cause bubbles in a pipeline. For example,
the first instruction in Figure 2b stores a result in A,

which the following instruction needs to read. In most
machines this forces the second instruction to delay
execution until the first one completes storing its re-
sult. The 801 and the RISC II avoid inserting a bubble
by means of an internal forwarding technique that
checks operands and automatically passes the result of
one instruction to the next.

The MIPS, in contrast, uses software to prevent inter-
locks from occurring; this, in fact, is what prompted the
machine’s name: Microprocessor without Interlocked
Pipelined Stages. A routine passes over the output of
the assembler to ensure that there cannot be conflicts.
NO-OPs are inserted when necessary, and the optimiz-
ing compiler tries to shuffle instructions to avoid exe-
cuting them. Traditional pipelined machines can spend

lanuary 1985 Volume 28 Number 1 Communications of the ACM I?

Articles

TABLE III. A Comparison of the Traditional Branch Instruction with the Delayed Branch Found in RISC Machines

Address Normal branch Delayed branch

100
101
102
103
104
105
106

LOAD X,A
ADD l,A
JUMP 105
ADD A,B
SUB C,B
STORE A,Z

LOAD X,A
ADD l,A
JUMP 106
NO-OP
ADD A,B
SUB C,B
STORE A,Z

delaied branch

LOAD X,A
JUMP 105
ADD %A
ADD A,B
SUB C,B
STORE A,Z

The delayed branch is used to avoid a branch dependency
bubble in the pipeline (Figure 2b). Machines with normal
branches would execute the sequence 100, 101,102,
105,. . To get that same effect with a RISC computer, it
would be necessary to insert a NO-OP in the Delayed branch
column. The sequence of instructions for RlSCs would then
be 100, 101, 102, 703, 106,. . . In the worst case, every
branch would take two instructions. The RISC compilers,
however, include optimizers that try to rearrange the se-

a fair amount of their clock cycle detecting and block-
ing interlocks, but the simple pipeline and register
model of RISCs also simplifies interlocking. Hennessy
believes the MIPS cycle would be lengthened by 10
percent if hardware interlocking were added. The de-
signers of the RISC II measured the internal forwarding
logic and found that careful hardware design prevented

A B C D E F G

instr 0
instr 1 Q

?

instr 2

0

0 A
0

Q

IBM’s solution was to deal with register allocation accord-
ing to the rules prescribed for painting a directed graph
with a fixed number of colors. Each color represents one
of the machine registers. The simultaneous lifetimes of A
through G are shown, from first use to last. Here we
assume only four registers, so the problem is to map the
seven variables into the four registers. This is equivalent
to painting the graph with only four colors.

We start by mapping the first four variables onto the four
colors. Variable E does not conflict with variable A, so
they can share the same color, in this case RED. Simi-
larly, F can share BLUE with C. With G all four colors are
used, so the compiler must use LOADS and STORES to
free a register to make space for G.

FIGURE 6a. IBM’s Solution to the Register Allocation Problem FIGURE 6b. A Partial Solution to Register Allocation

quence of instructions to do the equivalent operations while
making use of the instruction slot where the NO-OP appears.
The Optimized delayed branch column shows that the opti-
mized RISC sequence is 100,101, 702,105,. . . . Because
the instruction following a branch is always executed and the
branch at 101 is not dependent on the add at 102 (in this
example), this sequence is equivalent to the original program
segment in the Normal branch column.

forwarding from lengthening the RISC II clock cycle.

Multiple Instructions per Word
The designers of the MIPS tried an interesting variation
on standard RISC philosophy by packing two instruc-
tions into every 32-bit word whenever possible. This
improvement could potentially double performance if

RED BLACK BLUE GREEN

instr 0 A
(

instr 1

instr 2

0

0
x

A

0

E

8 E

(

C

x
C

???

ia Communications of the ACM]anuay 1985 Volume 28 Number I

ret

call

I
nesting

time
(in units of calls/returns)

This (graph shows the call-return behavior of programs
that inspired the register window scheme used by the
Berkeley RISC machines. Each call causes the line to
move, down and to the right, and each return causes the
line to move up and to the right. The rectangles show
how long the machine stays within the buffer. The longest

case is 33 calls and returns (t = 33) inside the buffer. In
this figure we assume that there are five windows
(w = 5). We have found that about eight windows hits the
knee of the curve and that locality of nesting is found in
programs written in C, Pascal, and Smalltalk.

FIGURE 7. The Call-Return Behavior of Programs

twice as many operations were executed for every 32-
bit instruction fetch. Since memory-access instructions
and jump instructions generally need the full %bit
word, and since data dependencies prevented some
combinations, most programs were sped up by 10 to 15
percent Arithmetic routines written in assembly lan-
guage had much higher savings. Hennessy believes the_
two-insi ruction-per-word format adds 10 percent to t&
Mmcqcle time because of the more complicated de-

coding. He does not plan to use the two-instruction-per-
word technique in his future designs. --

HIDDEN RISCS
If building a new computer around a reduced instruc-
tion set results in a machine with a better price/per-
formance ratio, what would happen if the same tech-
niques were used on the RISC subset of a traditional
machine? This interesting question has been explored

(if instr i + 1 needs data from instr i)

i+l IF

pipeline data forwarding
(if i+ 2 needs i+ l’s data)

111.1.

i+2
I

WRITE
11.1..

The memory is kept busy 100 percent of the time, the time. The short pipeline and pipeline data forwarding al-
regist 3r file is reading or writing 100 percent of the time, low the RISC II to avoid pipeline bubbles when data de-
and the execution unit (ALU) is busy 50 percent of the pendencies like those shown in Figure 2b are present.

FIGURE 8. The Three-Stage Pipeline of the RISC II

[amary 2!)85 Volume 28 Number I Communications of the ACM 19

Articles

by RISC advocates and, perhaps unintentionally, by the
designers of more traditional machines.

DEC reported a subsetting experiment on two imple-
mentations of the VAX architecture in VLSI. The VLSI
VAX has nine custom VLSI chips and implements the
complete VAX-11 instruction set. DEC found that 20.0
percent of the instructions are responsible for 60.0 per-
cent of the microcode and yet are only 0.2 percent of all
instructions executed. By trapping to software to exe-
cute these instructions, the MicroVAX 32 was able to fit
the subset architecture into only one chip, with an op-
tional floating-point coprocessor in another chip. As
shown in Table IV, the VLSI VAX, a VLSI implementa-
tion of the full VAX architecture, uses five to ten times
the resources of the MicroVAX 32 to implement the full
instruction set, yet is only 20 percent faster.

Michael L. Powell of DEC obtained improved per-
formance by subsetting the VAX architecture from the
software side. His experimental DEC Modula-2 com-
piler generates code that is comparable in speed to the
best compilers for the VAX, using only a subset of the
addressing modes and instructions. This gain is in part
due to the fact that optimization reduces the use of
complicated modes. Often only a subset of the func-
tions performed by a single complicated instruction is
needed. The VAX has an elaborate CALL instruction,
generated by most VAX compilers, that saves registers
on procedure entry. By replacing the CALL instruction
with a sequence of simple instructions that do only
what is necessary, Powell was able to improve perform-
ance by 20 percent.

The IBM S/360 and S/370 were also targets of RISC
studies. The 360 model 44 can be considered an ances-
tor of the MicroVAX 32, since it implements only a
subset of the 360 architecture in hardware. The rest of
the instructions are implemented by software. The
360/44 had a significantly better cost/performance ra-
tio than its nearest neighbors. IBM researchers per-
formed a software experiment by retargetting their
highly optimizing PL/8 compiler away from the 801 to
the System/370. The optimizer treated the 370 as a
register-to-register machine to increase the effective-
ness of register allocation. This subset of the 370 ran
programs 50 percent faster than the previous best opti-

TABLE IV. Two VLSI Implementations of the VAX

-.
VLSI Chips (including

floating point) 9 (22%)
Microcode 45OK
Transistors 1250K 1OlK ‘::I 00

These two implementations, although not yet in pro&Jots, illus-
trate the difficulty of building the complete VAX architacture in
VLSI. The VLSI VAX is 20 percent faster than thl MirxoVAX 32
but uses five to ten times the resources for the prooessor. Both
are implemented from the same three;micron double-level metal
NMOS technology. (The VLSI VAX also has extem?datl? and
address caches not counted in this table.)

mizing compiler that used the full 370 instruction set.
Software and hardware experiments on subsets of the

VAX and IBM 360/370, then, seem to support the RISC
arguments.

ARCHITECTURAL HERITAGE
All RISC machines borrowed good ideas from old ma-
chines, and we hereby pay our respects to a long line of
architectural ancestors. In 1946, before the first digital
computer was operational, von Neumann wrote

The really decisive considerations from the present point of
view, in selecting a code [instruction set], are more of a
practical nature: the simplicity of the equipment demanded
by the code, and the clarity of its application to the actually
important problems together with the speed of its handling
of those problems.’

For the last 25 years Seymour Cray has been quietly
designing register-based computers that rely on LOADS
and STORES while using pipelined execution. James
Thornton, one of his colleagues on the CDC-6600, wrote
in 1963

The simplicity of all instructions allows quick and simple
evaluation of status to begin execution. . Adding complica-
tion to a special operation, therefore, degrades all the others.

and also

In my mind, the greatest potential for improvement is with
the internal methods. .at the risk of loss of fringe opera-
tions. The work to be done is really engineering work, pure
and simple. As a matter of fact, that’s what the results
should be-pure and simple.3

John Cocke developed the idea of pushing compiler
technology with fast, simple instructions for text and
integer applications. The IBM 801 project, led by
George Radin, began experimenting with these ideas in
1975 and produced an operational ECL machine in
1979. The results of this project could not be published,
however, until 1982.

In 1980 we started the RISC project at Berkeley. We
were inspired by an aversion to the complexity of the
VAX and Intel 432, the lack of experimental evidence
in architecture research, rumors of the 801, and the
desire to build a VLSI machine that minimized design
effort while maximizing the cost/performance factor.
We combined our research with course work to build
the RISC I and RISC II machines.

In 1981 John Hennessy started the MIPS project,
which tried to extend the state of the art in compiler
optimization techniques, explored pipelined tech-
niques, and used VLSI to build a fast microcomputer.

Both university projects built working chips using
much less manpower and time than traditional micro-
processors.

* Burks. A.W.. Goldstine. H.H.. and van Neumann. 1. Preliminarv discussion of
the logical design of an electronic computing instr&ent. Rep. to U.S. Army
Ordinance Dept., 1946.
‘Thornton, J.E. Considerations in Computer Design-Leading Up to the Control
Data 6600. Control Data Chippewa Laboratory, 1963.

20 Communications of the ACM]anuay 1985 Volume 28 Number I

Articles

CONCHJSIONS
In my lliew, the remaining technical difficulty is how to
get good floating-point performance from RISCs. The
RISCs mentioned here have mediocre floating-point
performance without special hardware assists. Another
issue is whether RISCs will provide the same advan-
tages in the cost/performance factor for exploratory
programming environments such as Lisp and Smalltalk.
Initial experiments are promising.

I believe the split between architecture and imple-
mentation has caused architects to ignore the imple-
mentation consequences of architecture decisions,
which has led to “good” architectures with disappoint-
ing implementations. Complex architecture requires
lengthy. development cycles, and long development cy-
cles using implementation technologies that routinely
double in speed and capacity can potentially mean pro-
ducing a computer in an antiquated technology. RISCs
reduce this danger.

Simple machines can also dramatically simplify de-
sign ve::ification. As things stand now, it can take a
year or two to discover all the important design flaws
in a mainframe. VLSI technology will soon allow a
single-c:hip computer to be built that is as complicated
as a mainframe. Unfortunately, VLSI manufacturing
will also produce hundreds of thousands of computers
in the time it takes to debug a mainframe in the field.
RISC machines offer the best chance of heading off
“compc ter recall” as a new step in the development
cycle.

A final observation: Technology runs in cycles, so
trade-o:!fs in instruction set design will change over
time, if there is change in the balance of speeds in
memory and logic. Designers who reconcile architec-
ture with implementation will reduce their RISCs.

Acknozuledgments. I thank the many Berkeley stu-
dents w.ho worked hard to create RISCs, and my col-
leagues at IBM and Stanford for pursuing RISCs. I must
also acknowledge the excellent papers by Hennessy and
Hopkins for providing me with insights to help explain
the RISC phenomenon.

Thanks also go to Gordon Bell, Peter Denning, Susan
Eggers, Robert Garner, Garth Gibson, Paul Hansen, John
Hennessy, Paul Hilfiger, Mark Hill, Normam Jouppi,
Manolk. Katevenis, Randy Katz, John Ousterhout, Joan
Pendleton, Michael Powell, George Taylor, Tom West,
and David Ungar for their useful suggestions in improv-
ing this paper.

The Elerkeley RISC project was sponsored by DARPA,
order number 3803, monitored by NAVALEX under
contrac number NO0034K-025.

Further Reading. Items [I, 4, 91 should provide a good
introdul:tion to RISCs for the general reader. The re-
maining references may help to explain some of the
ideas presented in this paper in greater depth. The IBM
801 is described in [12], while the two papers by Martin
Hopkins of IBM [5, 61 provide historical and philosophi-

cal perspective on RISC machines. The IBM graph-
coloring algorithm is found in [2], and the subsetted use
of one instruction set in [8]. The primary reference for
the Berkeley RISC machines is [ll], although [lo] con-
tains the latest information on performance of the
RISC II and [7] a thorough explanation of the motiva-
tion for RISCs in general and the RISC II in particular.
An attempt to use RISCs in an exploratory program-
ming environment, in this case the object-oriented
Smalltalk system, is described in [13]. Joseph Fisher, a
Writable Control Store refugee like myself, is now
working on compiling “normal” programming languages
into very wide instructions (or horizontal microinstruc-
tions, depending on your perspective) for a high-per-
formance multiple arithmetic unit computer [3].

REFERENCES
1. Bernhard. R. More hardware means less software. 1EEE Specfrum 18.

12 (Dec. 1981). 30-37.
2. Chaitin. C.J. Register allocation and spilling via graph coloring. In

Proceedings of the SICPLAN 82 Symposium on Compiler Construc-
tion. SIGPLAN Not. 17, 6 (]une 1982). 98-105.

3. Fisher,].A. Very long instruction word architectures and the ELI-
512. In The 10th Annual International Symposium on Computer Archi-
tecture (Stockholm, Sweden, lone 13-17). ACM, New York. 1983, pp.
140-150.

4. Hennessy. I.L. VLSI processor architecture. IEEE Trans. Comput. To
be published.

5. Hopkins, M. A perspective on microcode. In Proceedings of the 21st
Annual IEEE Computer Conference (Spring COMPCON 83) (San Fran-
cisco, Calif., Feb.). IEEE. New York, 1983, pp. 108-110.

6. Hopkins. M. Definition of RISC. In Proceedings of the Conference on
High Level Language Computer Architecture (Los Angeles, Calif..
May). 1984.

7. Katevenis. M.G.H. Reduced instruction set computer architectures
for VLSI. Ph.D. dissertation. Computer Science Dept., Univ. of Cali-
fornia, Berkeley, Oct. 1983.

8. Lunde. A. Empirical evaluation of some features of instruction set
processor architecture. Commun. ACM 20, 3 (Mar. 1977). 143-153.

9. Patterson. D.A. Microprogramming. Sci. Am. 248, 3 (Mar. 1983).
36-43.

10. Patterson, D.A. RISC watch. Comput. Archit. News 12, 1 (Mar. 1984).
11-19.

11. Patterson. D.A., and S6quin. C. A VLSI RISC. Computer 15. 9 (Sept.
1982). 8-21.

12. Radin. G. The 801 minicomputer. IBM 1. Res. Dev. 27, 3 [May 1983).
237-246.

13. Ungar. D.. Blau. R.. Foley, P.. Samples, D.. and Patterson. D. Archi-
tecture of SOAR: Smalltalk on a RISC. In Proceedings of the 11th
Symposium on Computer Architecture (Ann Arbor, Mich., June 5-7).
ACM, New York, 1984, pp. 188-197.

CR Categories and Subject Descriptors: B.1.1 [Control Structures
and Microprogramming]: Control Design Styles; 8.2.1 [Arithmetic and
Logic Structures]: Design Styles; 8.7.1 [Integrated Circuits]: Types and
Design Styles: C.l.0 [Processor Architectures]: General

General Terms: Design, Performance
Additional Key Words and Phrases: RISC, VLSI, microprocessors,

CPU

Author’s Present Address: David A. Patterson, Dept. of Electrical Engi-
neering and Computer Sciences, Computer Science Division. University
of California, Berkeley, CA 94720.

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct commer-
cial advantage. the ACM copyright notice and the title of the publication
and its date appear, and notice is given that copying is by permission of
the Association for Computing Machinery. To copy otherwise. or to
republish, requires a fee and/or specific permission.

January 1985 Volume 28 Number 1 Communications of the ACM 21

