A Sequential Task Specification

- an example of how hard it is to find a problem with no parallelism
 - taken from…that’s right!…ECE190
 - another ECE190 MP3 (Fall 2008), with some simplifications

- a game for two players (Wythoff’s game)
 - two piles of sticks
 - goal: take the last stick(s)
 - allowed moves
 - take any # > 0 from either pile
 - take the same # > 0 from both piles

- note
 - no ties, no move cycles, finite # steps to goal (bounded by x + y)
 - thus all positions are forced win/forced loss if played correctly

- question
 - which positions are forced win/loss?
 - (lots of wins; we’ll focus on specifying forced loss positions)
• start with the goal state, (0,0)
 – if \((x,y) = (0,0)\) on your turn, you lose
 – thus it’s a forced lose

• first set of forced wins
 – any position from which you can reach the goal state in one move
 – for any \(P > 0\)
 • \((P,0)\) or
 • \((P,P)\) or
 • \((0,P)\)
• any position
 – for which all possible moves are forced wins
 – is a forced loss
 – thus (1,2) and (2,1) are forced losses

• Which induces more forced wins: for any P > 1,
 – (P+1,1) or
 – (P,2) or
 – (P+1,P) or
 – (P,P+1) or
 – (2,P) or
 – (1,P+1)

 the next forced loss is (3,5) and (5,3), and so forth

• but let’s use induction…
starting point
 – for simplicity, write forced loss cases as (x,y) with x < y
 – observe that any forced loss (x,y) differs by some amount; call it k=y-x
 • base case (0,0) has k=0
 • next couple of cases, (1,2) and (3,5), have k=1, k=2
 – forced loss case for any k is unique
 • assume two cases for some k: (x,x+k) and (z,z+k)
 • assume x<z without loss of generality
 • but (z,z+k) can move to (x,x+k) in one move
 (take z-x from both piles)
 • contradiction: (z,z+k) is not a forced loss, but a forced win!
 – however, forced loss case may not exist for all k

now use algorithmic induction
 – base case is (0,0); we know it works and thus k=0 case exists
 – assume sequence (x0,y0), (x1,y1), …, (x(k-1), y(k-1)) to some k
 – find method
 • to determine xk and
 • show that (xk, xk + k) is a forced loss

solution: let xk be
 – the smallest whole number
 – that does not appear in any previous x or y value
 – note: good luck parallelizing the search!

proof
 – three possible move types from (xk, xk + k)
 – we’ll consider one at a time
 – show that all result in forced wins
first two moves: reduce \(x_k \) OR reduce both

- for some \(p > 0 \)
 - \((x_k, x_k + k) \) moves to \((x_k - p, x_k + k) \) OR
 - \((x_k, x_k + k) \) moves to \((x_k - p, x_k + k - p) \)

- by choice of \(x_k \), \(x_k - p \) appears in a previous forced loss

- thus, for some \(i \), either \(x_i = x_k - p \) or \(x_i + i = x_k - p \)

- first case
 - forced loss at \((x_k - p, x_k - p + i) \)
 - note that \(i < k \), so \(x_k - p + i < x_k + k - p < x_k + k \)
 - and both \((x_k - p, x_k + k - p) \) and \((x_k - p, x_k + k) \) are forced wins

- second case
 - forced loss at \((x_k - p - i, x_k - p) \)
 - reverse the indices: clearly \(x_k - p - i < x_k + k - p < x_k + k \)
 - again, both \((x_k - p, x_k + k - p) \) and \((x_k - p, x_k + k) \) are forced wins
last move: reduce $x_k + k$

- for some $p > 0$, $(x_k, x_k + k)$ moves to $(x_k, x_k + k - p)$

- first case: $|k-p| < k$
 - difference $k - p$ is now covered by some previous forced loss case
 - but x_k does not appear (by choice of x_k) in that case
 - thus result is forced win (forced loss for any k is unique)

- second case: $|k-p| \geq k$ (which means $p \geq 2k$)
 - reverse indices to put smaller value first: $(x_k + k - p, x_k)$
 - $x_k + k - p < x_k$, thus $x_k + k - p$ appears in a previous forced loss
 - for some i, either $x_i = x_k + k - p$ or $x_i + i = x_k + k - p$
 - first case
 - forced loss at $(x_k + k - p, x_k + k - p + i)$
 - again, since $i < k$, $x_k + k - p + i < x_k$
 - and $(x_k + k - p, x_k)$ is a forced win
 - second case
 - forced loss at $(x_k + k - p - i, x_k + k - p)$
 - reverse the indices: clearly $x_k + k - p - i < x_k$
 - again, $(x_k + k - p, x_k)$ is a forced win

- and…
 - there is a closed-form solution!
 - (didn’t see one last time I looked, but it’s old…maybe as old as 1907?)
 - however, I suggest that you try to find it yourself
 - since without it you can’t parallelize…
 - [darn]