
11 February 2010

Lecture 8

ECE498SL Lec. Notes L8PA

Lecture Topics

• overloading
– pitfalls of overloading & conversions
– matching an overloaded call
– miscellany
– new & delete

• variable declarations
• extensibility: philosophy vs. reality

Administrivia

• check Lab #1 progress
– see web board post
– ok to finish by next Tuesday?

11 February 2010

Lecture 8

ECE498SL Lec. Notes L8P1

Pitfalls of Overloading and Conversions

• here’s a real danger that can be hard to foresee
– two “natural” interpretations of one set of types…
– watch out!
– instead, make up new names for BOTH options
– similar to need for “explicit” keyword, but no easy solution

• “…minimizing surprises caused by implicit conversions is inherently
difficult…” Doug McIlroy, as quoted by Str, p. 227

• Consider the following
– class MyObject
– friend function

MyObject operator+ (MyObject& a, MyObject& b);
– MyObject x;

– What does “MyObject y = x + 42;” do?
• Does answer depend on which of the following are defined?

MyObject (int num); // conversion from int to MyObject
operator int (); // conversion from MyObject to int

– What if they’re both defined?
– What happens if I change my answer

(e.g., create the constructor after using the code for a while)?
• you need both functions to compile

– when both defined:
– convert x to int, add, then convert sum to MyObject

• Why isn’t this ambiguous?
– Compiler can’t use constructor on 42
– because operator reference argument is non-const! Oops!

• when you add const
friend operator+ (const MyObject& a, const MyObject& b);

– having both constructor and cast operator creates ambiguity
– having only constructor works fine (opposite order as before…)

• so: forgetting const changed both legal options and their meanings…

11 February 2010

Lecture 8

ECE498SL Lec. Notes L8P2

“Better Matching”

• the hazards of matching
– No one I’ve asked has ever remembered these rules, even people whose

primary computer language is C++.
– when you think that you’ve come up with something “cool” (i.e., subtle)

using overloading…
– likely to be hard to recognize, understand

• a couple of asides [not for board]
– I can’t even make sense of the rules when I read them… (p. 228);

to wit, Stroustrup just said (p. 225) that he wanted to differentiate const
from non-const args, and in the rules he says that such conversions don’t
count (and are thus ambiguous, making them illegal to ever use…); I can
only guess that such oddities are the result of the slight simplification he
mentions…

– My first attempt to create a pitfall example using IBM’s online version of
the rules also failed; gcc is either more strict or I mis-read them.

– BUT: less complicated than I remember (I remember something about
counting args being converted; maybe in the ARM?)

11 February 2010

Lecture 8

ECE498SL Lec. Notes L8P3

• why is matching challenging? for starters,
– C’s implicit conversions are NOT acyclic (“most derived?”)
– but Stroustrup wanted to get rid of implicit narrowing anyway
– yet g++ still allows narrowing, even for matching

• rule: pick lowest numbered match, which must be unique (or causes error)
– 1: no conversions (non-const to const, array name to pointer, etc.)
– 2: integral promotions (widening/sign removal)
– 3: standard conversions (int to double, derived* to base*, etc.)
– 4: user-defined conversions (single-arg. constructors)
– 5: ellipsis (…)

• [See ARM for more precise version]

• For >1 argument, matched function must be at least as good in all arguments
and better in at least one argument.

• a simple call stealing case… [more complex examples in Lec. 7 notes]

int func (char arg); // original function

int answer = func (42); // code calls original function

int func (int arg); // new function added later

// call shown is “stolen” silently

11 February 2010

Lecture 8

ECE498SL Lec. Notes L8P4

Overloading Miscellany

• consider overloading array syntax (operator [])

• Did you think of overloading reads, writes, or both?
– X[i] = X[j];

– left side is an L-value
– right side is some data type stored in X at index j

• implementation
– right side probably pretty easy (look up and return)
– if X is a complicated data structure, left side may be slower/harder
– Can you define one function (operator []) that works?
– not really

• should there be two versions of operator []?
• or find a workaround?

• example workaround (see Str. Sec. 3.7.1)
– use an extra data structure to hack it
– given class ALPHA that stores objects of class BETA
– create helper class ALPHA_REF containing ALPHA* and integer
– operator[] returns new ALPHA_REF
– ALPHA_REF has two operators

• cast operator to BETA (do the actual lookup)
• assignment operator from BETA (do an insertion)

– now X1[i] = X2[j] becomes…

X1.operator[] (i).operator=(X2.operator[](j).operator BETA ())

11 February 2010

Lecture 8

ECE498SL Lec. Notes L8P5

• not all operators can be overloaded
– member access (“.”)
– pointer to member function invocation (“.*”)
– conditional expressions (?:)
– scope identification (::)

• overloading can break C’s duality
– pointer-like objects and array-like objects not necessarily equal
– pointer vs. array

• array[10]
• *(array+10)

– pointer dereference
• inst->member
• (*inst).member
• inst[0].member

• not possible to change definitions equivalently
because “.” can’t be overloaded

• copying vs. constructing
– What’s the difference between the two assignments below?

ALPHA a;
ALPHA b = a; // copy constructor
b = a; // assignment

– declaration has no “old version”
• may need work to destroy previous version
• e.g., rehash instance in a lookup table

– these two are NOT equivalent in C++
• default version is memberwise copy for both
• overriding one does NOT catch the other

(other version will use default copy)
• compiler will NOT warn you

11 February 2010

Lecture 8

ECE498SL Lec. Notes L8P6

Overloading New and Delete

• Str. Ch. 10 discusses memory management in detail

• both operators can be overloaded
– overloading of new is fairly flexible
– can overload delete, but not all versions can be reached
– when overriding default memory management

• include C++ standard header
• #include <new>

• overloading operator new
– std::size_t argument (implicit in calls)

• must appear as first argument in all operator new signatures
• holds number of bytes needed when called

– array and instance allocation are distinct even by default
• signatures

void* operator new (std::size_t size);
void* operator new[] (std::size_t size);

• for a class ALPHA:
ALPHA* a;
a = new ALPHA (1, 2, 3); // operator new
a = new ALPHA[10]; // operator new[]

• note: array allocation requires a constructor with no arguments
– can extend either/both versions with arbitary arguments

• for example
operator new (std::size_t size, int region_id);

• other arguments are then passed to new as follows
a = new(42) ALPHA (17, "potato");

11 February 2010

Lecture 8

ECE498SL Lec. Notes L8P7

• overloading operator new (cont’d)
– one use of extra arguments: placement

• want some control over location of “dynamic” allocation
• e.g., sometimes necessary to locate instances in

DMA-accessible memory (low physical addresses)
– default placement

• locate at a specific place (provided as argument to new)
• void* operator new (std::size_t size, void* p)

{return p;}

• exception handling
– header file <new> also defines an exception for allocation failure

• std::bad_alloc

• derived from std::exception
– versions of new discussed so far can generate exceptions

void* operator new (std::size_t size) throw (std::bad_alloc);
void* operator new[] (std::size_t size) throw (std::bad_alloc);

– notation implies that no other exceptions are thrown

– default versions also exist that return NULL instead
• header file <new> defines structure and static variable to allow

pseudo-argument

void* operator new (std::size_t size, const std::nothrow_t&)
throw ();

• notation here implies that no exceptions are thrown
• to invoke this form, use something like

a = new(std::nothrow) ALPHA (42, “no exceptions”);

11 February 2010

Lecture 8

ECE498SL Lec. Notes L8P8

[skip most of this slide in lecture; leave in notes]

• exception handling before exceptions
– some of the C++ support pre-dates the exception-handling mechanisms
– this support is not thread-safe, and you should generally avoid it

– default operator new behavior
• try to allocate
• on failure, check whether a handler has been registered for failures
• if so, call it and try again
• if not, throw an exception

– you can register a handler with
new_handler set_new_handler (new_handler) throw ();

• new_handler is a pointer to a function that
– takes no arguments
– returns nothing (void)

• set_new_handler returns the previous handler pointer

– note that the default behavior keeps calling the handler
• if handler can’t fix the allocation problem
• e.g., by garbage collection
• it must throw an exception
• to avoid an infinite loop

– again
• this mechanism IS NOT THREAD-SAFE
• your program has one global variable for the handler pointer

11 February 2010

Lecture 8

ECE498SL Lec. Notes L8P9

• overloading operator delete
– gcc will let you define many versions

• but only two versions are usable
• non-array

void operator delete (void* p);
delete a;

• array
void operator delete[] (void* p);
delete[] a;

• note
– compiler does not check that you used the “correct” version
– it does not remember which version of new you used
– it allows either version of delete without warning

– the book rambles for a while on rationale
• tries to establish the difficulty for programmers

to track “types” of allocations and use proper deallocations
• instead, have new record type and delete make use of it
• except that the array version allows exactly that type of oddity

– what’s the real reason?
• probably the fact that the following are synonymous

– delete(a)
– delete a

• similar to people writing return (42);
• and thus lots of code might break to support

argument-passing to delete

