
UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN
Department of Electrical and Computer Engineering

ECE 498MH Signal and Image Analysis

Lab 6
Fall 2014

Assigned: Thursday, November 13, 2014 Due: Thursday, November 20, 2014

Reading: http://www.owlnet.rice.edu/~elec539/Projects99/BACH/proj2/wiener.html

Lab 6.1

This lab will design several filters for the purpose of image denoising. Download a noisy image from http:

//courses.engr.illinois.edu/ece498mh/fa2014/lab6image.png. Read it into matlab using imread.
You should find that this is a 144 × 111 × 3 matrix; the three planes are the red, green, and blue planes.

(a) Download http://courses.engr.illinois.edu/ece498mh/fa2014/plotimage.m. Your runlab.m

function should call imread to load the noisy image, then call plotimage in order to create figure
1. This is a function that rescales the image (so every pixel value is between zero and one), and then
plots it. The image itself is shown in the upper left corner. Its middle column is shown in three plots
in the upper right corner (red, green, and blue planes). Its middle row is shown in three plots in the
lower left corner (red, green, and blue planes). Compare the signal plots to the image. Notice that the
signals show the image features, but that the noise looks much worse in the signal plots than in the
image; the eye naturally denoises the image, so it looks better than it actually is.

(b) The desirable image features are generally constant-color regions, ranging from 5 pixels to 50 pixels
in width, depending on the angle. As a first de-noising filter, let’s create an ideal low-pass filter. A
constant color region could be considered half of a sine wave, so let’s set the cutoff frequency to be π/5
radians/sample.

In your runlab.m function, use the firpm function to create a 20-sample FIR lowpass filter. Set the
desired response equal to D(ω) = 1 for 0 ≤ ω ≤ π

5 (note that π
5 radians/sample is 0.1 cycle/sample,

which is 0.2 times the Nyquist frequency). Give your filter a wide transition band: set the desired
response to D(ω) = 0 for 2π

5 ≤ ω ≤ π (that is, 0.4 Nyquist up to Nyquist).

You have now created a one-dimensional filter, but we need a two-dimensional filter. There are more
computationally efficient ways to do this, but for now, let’s create a 2D filter by taking the outer
product of the 1D filter with itself: If your 1D filter is in the row vector B, then the 2D filter can be
B2=B’*B;. Use size to verify that B2 is a 20 × 20 impulse response.

Run for c=1:3, denoised1(:,:,c)=conv2(A(:,:,2),B2,’same’); end. In figure(2), use plotimage
to show the image denoised1. It should look considerably denoised, and also considerably smoothed.

Plot the impulse response of the lowpass filter in the lower right quadrant as follows: subplot(2,2,4);
imagesc(B2);. Notice that it looks like a two-dimensional sinc function!

(c) Wiener filters are easiest to design in the spectral domain, so let’s find the level spectrum (power
spectrum, expressed in decibels) of the noisy image.

Find the power spectrum of A as for c=1:3, SAA(:,:,c)=abs(fft2(A(:,:,c))).^2;end.

Find the level spectrum as LAA=10*log10(SAA);. In order to make it easier to plot, clip it 60dB below
its peak: peak=max(LAA(:)); LAA=max(LAA,peak-60);

http://www.owlnet.rice.edu/~elec539/Projects99/BACH/proj2/wiener.html
http://courses.engr.illinois.edu/ece498mh/fa2014/lab6image.png
http://courses.engr.illinois.edu/ece498mh/fa2014/lab6image.png
http://courses.engr.illinois.edu/ece498mh/fa2014/plotimage.m


Lab 6 2

Use plotimage to show the level spectrum in figure(3);. Oops: fft2 puts the low frequencies in
the four corners, which is counter-intuitive, since in class, we always show the low frequencies in the
middle. Fix this using the fftshift function: plotimage(fftshift(LAA));.

Do the same thing to show the power spectrum of the filtered image, denoised1, in figure(4);. Find
the level response of the lowpass filter, using something like

LBB=20*log10(abs(fft2(B2)));peak=max(LBB(:));LBB=max(LBB,peak-60);.

Use subplot(2,2,2); imagesc(fftshift(LBB)); to show the power spectrum of the filter you de-
signed. Notice that it’s not exactly the filter you wanted—it has a little bit of ripple, and a very wide
transition band—but it’s not too bad.

(d) Let’s design a Wiener filter. First, let’s use the image itself to estimate the noise power spectrum.
Find a 20 × 20 region of the image where you believe the original image has perfectly constant
color, so that the only variation is noise. Cut this out, as V=A(m+[0:19],n+[0:19],:); where
(m,n) is the upper right corner of the region you’ve chosen (use imagesc to make sure you’ve
cut the right region). Use for c=1:3, V(:,:,c)=V(:,:,c)-mean(mean(V(:,:,c))); end to re-
move the average from each color plane (try using imagesc to plot this; the constant color should
have been removed, and it should be just noise). Compute the power spectrum of the noise as
for c=1:3,SVV(:,:,c)=abs(fft2(V(:,:,c))).^2; end.

Now that we have the noise power spectrum, let’s estimate the signal power spectrum. The clean signal
is unknown, but the noisy signal is available. We want to find a 20 × 20 estimate of the noisy signal
power spectrum, SXX. One way to do this is by averaging the power spectra from all 20 × 20 blocks in
the image. Figure out how many such blocks exist in the image, then do something like

[M,N,C]=size(A);

MBLOCKS=floor(M/20);

NBLOCKS=floor(N/20);

for m=0:(MBLOCKS-1),

for n=0:(NBLOCKS-1),

for c=1:3,

foo=abs(fft2(A(20*m+[1:20],20*n+[1:20],c))).^2;

SXX(:,:,c)=SXX(:,:,c)+foo;

end

end

end

SXX = SXX/(M*N);

If the signal and the noise are independent, their power spectra should just add, so we should be able
to find SSS(ω) = SXX(ω) − SV V (ω). Try SSS=max(0,SXX-SVV); to keep it from going negative.

Create a Wiener filter frequency response as H2=SSS./SXX;. Inverse Fourier transform it as h2=ifft2(H2);
Note: although this formula for the Wiener filter is exactly right using a DTFT, it is not quite right
using a DFT, therefore it’s possible this Wiener filter may not be quite as optimal as previously claimed.

Let’s try it. It should be interesting to see what benefit, if any, comes from having color-dependent
Wiener filters. Try for c=1:3, denoised2(:,:,c)=conv2(A(:,:,c),h2(:,:,c),’same’); end;.

In figure(5);, use plotimage to show the denoised filter, then use imagesc to show the impulse
response h2 in the lower right corner. In figure(6);, do the same thing with the level spectra of the
denoised image and of the filter.


