UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN

Department of Electrical and Computer Engineering

ECE 498MH SIGNAL AND IMAGE ANALYSIS

Homework 5

Fall 2013

Assigned: Friday, October 11, 2013

Due: Friday, October 18, 2013

Reading: SPF Chapter 7 and Sections 8.1-8.5

Problem 5.1

(a) Recursive formula generates an infinite-length h[n], so it's an IIR filter.

(b)
$$h[-1] = 0, h[0] = 1, h[1] = 1, h[2] = 0.5, h[3] = 0$$

(c)
$$H(z) = \frac{1+0.5z^{-1}+0.25z^{-2}}{1-0.5z^{-1}+0.25z^{-2}}$$

(d)

Poles:
$$p_{1,2} = \frac{1}{2} \pm j \frac{\sqrt{3}}{4}$$
, Zeros: $r_{1,2} = -\frac{1}{2} \pm j \frac{\sqrt{3}}{4}$

(e)
$$H_d(\omega) = \frac{1+0.5e^{-j\omega}+0.25e^{-2j\omega}}{1-0.5e^{-j\omega}+0.25e^{-2j\omega}}$$

ω	$H_d(\omega)$	$ H_d(\omega) $
0	<u>5</u> 3	$\frac{5}{3}$
$\frac{\pi}{2}$	$\frac{0.75 - 0.5j}{0.75 + 0.5j}$	ĺ
π	$\frac{3}{5}$	$\frac{3}{5}$

(f)

(g) Lowpass

Problem 5.2

Consider the FIR filter $h[n] = 0.25\delta[n+2] + 0.5\delta[n+1] + \sqrt{3}\delta[n] + 0.5\delta[n-1] + 0.25\delta[n-2]$.

(a)
$$H_d(\omega) = \sqrt{3}\cos(0) + \cos(\omega) + 0.5\cos(2\omega)$$

ω	$H_d(\omega)$	$ H_d(\omega) $	$\angle H_d(\omega)$
0	$\sqrt{3} + \frac{3}{2}$	$\sqrt{3} + \frac{3}{2}$	0
$\frac{\pi}{4}$	$\sqrt{3} + \frac{\sqrt{2}}{2}$	$\sqrt{3} + \frac{\sqrt{2}}{2}$	0
$\frac{\pi}{2}$	$\sqrt{3} - \frac{1}{2}$	$\sqrt{3} - \frac{1}{2}$	0
$\begin{array}{c c} \frac{\pi}{4} \\ \frac{\pi}{2} \\ \frac{3\pi}{4} \end{array}$	$\sqrt{3}-\frac{\sqrt{2}}{2}$	$\sqrt{3}-\frac{\sqrt{2}}{2}$	0
π	$\sqrt{3} - 0.5$	$\sqrt{3} - 0.5$	0

(b)

(c) You could call it lowpass or bandstop.

Homework 5

Matlab Exercises

Problem 5.3

Problem 5.4

