UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN

Department of Electrical and Computer Engineering
ECE 498MH Signal and Image Analysis

Solutions 3

Fall 2013

Reading: Signal Processing First (SPF) Chapter 5

Problem 3.1

(a) $y[n]=x[n]-x[0]$ is linear.
(b) $y[n]=x[n]-1$ is nonlinear (a system like this, nonlinear only because of the constant offset, is called "affine"). For example,

$$
\left.\begin{array}{rl}
x_{1}[n]=\cos \pi n & \Rightarrow y_{1}[n]= \begin{cases}0 & n \text { even } \\
-2 & n \text { odd }\end{cases} \\
x_{2}[n]=1 & \Rightarrow y_{2}[n]=0
\end{array}\right]=y_{3}[n]=\cos \pi n \neq y_{1}[n]+y_{2}[n] .
$$

Problem 3.2

(a) $y[n]=x[n]-x[0]$ is time-varying. For example,

$$
\begin{aligned}
x_{1}[n]=\cos \pi n & \Rightarrow y_{1}[n]= \begin{cases}0 & n \text { even } \\
-2 & n \text { odd }\end{cases} \\
x_{2}[n]=x_{1}[n-1] & \Rightarrow y_{2}[n]=\left\{\begin{array}{ll}
0 & n \text { even } \\
2 & n \text { odd }
\end{array} \neq y_{1}[n-1]\right.
\end{aligned}
$$

(b) $y[n]=x[n]-1$ is time-invariant.

Problem 3.3

$$
y[n]= \begin{cases}0 & n \leq-2, n \geq 4 \\ 0.5 & n=-1,3 \\ 1.5 & n=0,2 \\ 2 & n=1\end{cases}
$$

Problem 3.4

