UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN

Department of Electrical and Computer Engineering
ECE 498MH Signal and Image Analysis

Solution 2

Fall 2013

Assigned: Friday, September 13, 2013
Reading: Signal Processing First (SPF) pp. 36-57

Problem 2.1

Consider the following signal:

$$
x[n]=2+2 \cos \frac{\pi n}{4}+\sin \frac{\pi n}{2}+\frac{1}{2} \cos \frac{3 \pi n}{4}
$$

(a)

$$
X_{k}= \begin{cases}2 & k=0 \\ 1 & k= \pm 1 \\ \frac{1}{2 j} & k=2 \\ -\frac{1}{2 j} & k=-2 \\ \frac{1}{4} & k= \pm 3\end{cases}
$$

(b) Sketch should show

$$
\left|X_{k}\right|^{2}= \begin{cases}4 & k=0 \\ 1 & k= \pm 1 \\ \frac{1}{4} & k= \pm 2 \\ \frac{1}{16} & k= \pm 3\end{cases}
$$

(c) Total power is $4+1+1+\frac{1}{4}+\frac{1}{4}+\frac{1}{16}+\frac{1}{16}=6 \frac{5}{8}$.

Problem 2.2

Consider the signal

$$
x(t)=|\cos (2 \pi t)|
$$

(a) Sketch is like a cosine, but all positive.
(b) $T_{0}=\frac{1}{2}, \Omega_{0}=4 \pi$.
(c)

$$
\begin{gathered}
X_{k}= \begin{cases}\frac{2}{\pi} & k=0 \\
2 \int_{-1 / 4}^{1 / 4} \frac{e^{j 2 \pi t}+e^{-j 2 \pi t}}{2} e^{-j \pi k t} d t & k \neq 0\end{cases} \\
X_{k}= \begin{cases}\frac{2}{\pi} \\
\frac{1}{(1-2 k) \pi} \sin \left(\frac{1-2 k}{2} \pi\right)+\frac{1}{(1+2 k) \pi} \sin \left(\frac{1+2 k}{2} \pi\right) & k \neq 0\end{cases}
\end{gathered}
$$

Matlab Exercises

Problem 2.3
(a)

(b)
(c) $T_{0}=0.0088$ seconds for this waveform.

(d)

(e)

(f)

(g)
(h) Pitch is retained by the one-cosine approximation. Vowel quality starts to be audible with the twocosine or five-cosine approximation.

