
UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN
Department of Electrical and Computer Engineering

ECE 498MH Signal and Image Analysis

Homework 4
Fall 2013

Assigned: Friday, September 27, 2013 Due: Friday, October 11, 2013

Reading: Signal Processing First (SPF) Chapter 6

Problem 4.1

Find the impulse response of the following system:

y[n] = 0.5x[n] + 0.6x[n− 1] + x[n− 2]

Problem 4.2

The input to each of the following systems is x[n] = cos (ωn) for some frequency ω. In each case, find
the output of the system. In each case you should express the output of the system as y[n] = A cos (ωn+ θ),
where A and θ are terms that depend on ω. Thus, for example, in part (b), it’s not sufficient to write the
output as a sum of three cosines; you need to write the output as a single scaled, phase-shifted cosine.

(a) y[n] = x[n] − x[n− 1]

(b) y[n] = x[n] + 0.6x[n− 3] + 0.4x[n− 4]

(c) y[n] = 0.5x[n] + 0.6x[n− 1] + x[n− 2]

Problem 4.3

Find y[n] = x[n] ∗ h[n], where

h[n] =

{
1 0 ≤ n ≤ 3
0 otherwise

x[n] =

{
1 0 ≤ n ≤ 7
0 otherwise

Matlab Exercises

In this problem you will synthesize a short tune using pure tones, then analyze notes from two different
musical instruments, then resynthesize the same tune as played by each of the same two instruments. Your
handed-in homework for this problem consists of four waveform files: a pure-tone song, a song synthesized
to sound like a musical instrument, and then low-pass filtered and high-pass filtered versions of the latter.

In order to do this problem, you might find it useful to know that the standard musical scale is logarithmic.
Thus if cos(2πF1t) and cos(2πF2t) are one octave apart, that is equivalent to saying that F2 = 2F1, or that



Homework 4 2

lnF2 = lnF1 + ln 2. Similarly if cos(2πF1t) and cos(2πF2t) are one semitone apart, that is equivalent to
saying that F2 = (21/12)F1, or that lnF2 = lnF1 + (1/12) ln 2.

All musical tones are defined relative to piano note A4, the A in the center of the piano, which is at
440Hz. In this lab we will use the notes starting at A5 (one octave above A4), because the D/A cards in
most computers work better at slightly higher frequencies. Thus we will use

FA = 880

FB = 987.77

FC = 1046.5

FD = 1174.7

FE = 1318.5

FF = 1396.9

FG = 1480.0

(a) Create pure tones of one second in length, at each frequency. Thus, for example, define FS=16000;,
then t=[0:(FS-1)]/FS;, then FA=880;, then toneA=cos(2*pi*FA*t);. Play your tones C through
G, then A and B, to make sure that they sound like a major scale.

(b) Create a short tune by concatenating the notes you need. Use one-second measures, thus in order to
insert a quarter-note on the A, you would insert toneA(1:(FS/4)). Thus, for example, the first seven
notes of “doh, a deer” could be created as: dohadeer = [toneC(1:(3*FS/4)), toneD(1:(FS/4)),

toneE(1:(3*FS/4)), toneC(1:(FS/4)), toneE(1:(FS/2)), toneC(1:(FS/2)), toneE(1:FS)];. Of
course, you might want to use several lines to construct this, using the syntax dohadeer=[dohadeer,

toneD(1:(FS/4))]; and so on. Play your song. Tweak it until you are happy with it (tweaking may
be easiest if you put these commands into a script file). If you need notes beyond the ones you’ve
already created, go ahead and create them by doubling or halving the frequencies you’ve already used.

Save this song using wavwrite, and hand in a copy electronically.

(c) Download samples of two different musical instruments from the University of Iowa musical instru-
ment samples library, at http://theremin.music.uiowa.edu/MIS.html. The first note in each waveform
is a C; since the C you have synthesized is C6, you probably want to download the scale C6B6.
Perform a Fourier analysis of the C6 note from each of your two instruments: cut out exactly ten
periods from the note, take the Fourier transform of those ten periods, and find the magnitude and
phase of the first seven transform components using commands something like magX=abs(fft(x));

MTRUMPET=magX(11:10:71); and phaX=unwrap(angle(fft(x))); PTRUMPET=phaX(11:10:71);.

(d) Construct synthesized versions of your two musical instruments at each note needed for your tune.
Thus, for example,

trumpetC = zeros(1,FS);

for k=1:7,

trumpetC=trumpetC+MTRUMPET(k)*cos(2*pi*k*FC*t+PTRUMPET(k));

end

You may find it useful to put these commands into a script, so that you can copy them several times,
and change the type of instrument and the name of the note in each place.

When you have created these notes, listen to them. They may not sound entirely natural, but they
should sound recognizably similar to the instrument you analyzed.

Another way to do this is to create a matrix with all of the seven tones, A-G, in the rows of the matrix,
thus



Homework 4 3

notes=[FA,FB,FC,FD,FE,FF,FG]

tones=zeros(7,FS);

for n=1:7, for k=1:7,

tones(n,:)=tones(n,:)+MTRUMPET(k+1)*cos(2*pi*k*notes(n)*t+PTRUMPET(k+1));

end

When you have created these notes, listen to them. They may not sound entirely natural, but they
should sound recognizably similar to the instrument you analyzed.

(e) Construct versions of your short song as played by the instrument you have analyzed. Save a version
of this song, and send it to me.

(f) Construct an averaging low-pass filter: hlpf=0.1*ones(1,10);. Use ylpf=conv(hlpf,song); to
convolve your song with the lowpass filter. Use wavwrite to save a copy of the lowpass filtered song,
and send it to me.

(g) Construct a first-difference high-pass filter: hhpf=[1,-1;. Use yhpf=conv(hlpf,song); to convolve
your song with the lowpass filter. Use wavwrite to save a copy of the lowpass filtered song, and send
it to me.


