UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN
 Department of Electrical and Computer Engineering
 ECE 410 Digital Signal Processing

 Quiz 3

 Quiz 3}

Professors Bresler, Hasegawa-Johnson
Wednesday October 6th, 2010

Name:
Section: 1pm (E) or 3 pm(G)

Instructions

- You may not use any calculators, cell phones, earphones, or any other forms of electronics on this quiz.
- Show all your work to receive full credit for your answers.
- When you are asked to "calculate", "determine", or "find", this means providing closed-form expressions (i.e., without summation or integration signs).
- Neatness counts. If we are unable to read your work, we cannot grade it.
- Turn in your entire booklet once you are finished. No extra booklet or papers will be considered.
- The asterisk mark (*) denotes convolution.

Problem	Points
1	
2	
3	
4	
Total	

Problem 1 (30 points)

Consider the causal, linear shift-invariant (LSI) system (with zero initial conditions) described in the following diagram:

(a) (5 points) Determine the linear constant coefficient difference equation relating the input $x[n]$ to the output $y[n]$ and express it in the standard form, i.e.,

$$
y[n]=\sum_{k} \beta_{k} x[n-k]+\sum_{j} \alpha_{j} y[n-k]
$$

(b) (10 points) Find the unit-pulse response of the system $h[n]$ using the z-transform method.
(c) (10 points) Find the zero-state response of the system when $x[n]=\left(\frac{1}{9}\right)^{n} u[n-3]$
(d) (5 points) Find the zero-state response of the system when $x[n]=\left(\frac{1}{9}\right)^{n} u[n-5]$

Problem 2 (25 points)

For the following z -transforms:
(i) Sketch the zero-pole plot.
(ii) Assume that the sequences are right-sided (i.e., causal) and sketch the region of convergence (ROC)
(iii) Determine whether the DTFT of the sequences exists.
(iv) Compute the inverse z-transform corresponding to the determined ROC
(a) (7 points) $X_{1}(z)=\frac{z^{-2}}{z+\sqrt{3} e^{j \frac{\pi}{3}}}$
(b) (9 points) $X_{2}(z)=\frac{1+\frac{1}{3} z^{-1}}{\frac{1}{15}-\frac{8}{15} z^{-1}+\frac{1}{15} z^{-2}}$
(c) $\left(9\right.$ points) $X_{3}(z)=\frac{-1+z^{-1}}{\left(-4+3 z^{-1}+z^{-2}\right)}$

Problem 3 (25 points)

For each of the following sequences:
(i) Determine the z-transform, $X(z)=\sum_{n=0}^{\infty} x[n] z^{-n}$, if it exists.
(ii) Include with your answer the region of convergence of the z-transform in the z-plane.
(iii) Specify whether or not the DTFT of the sequence, $X_{d}(\omega)=\sum_{n=-\infty}^{\infty} x[n] e^{-j \omega n}$, exists.
(a) (10 points) $x[n]=(3)^{n} u[n-4]+\left(\frac{1}{8}\right)^{n-4} u[n-2]$
(b) (10 points) $x[n]=(0.2)^{n-1}(u[n-1]-u[n-6])$
(c) (5 points) $x[n]=\sin (\pi n)-\cos (\pi n)$

Problem 4 (20 points)

Determine whether the following systems characterized by the following relations are, with respect to the input,
(i) linear or non-linear
(ii) causal or non-causal
(iii) shift-invariant or shift-varying

Assume that the input is zero before $n=0$ and that the initial conditions of the systems are all set to zero. Justify your answers with proofs or counter-examples.
(a) (5 points) $y[n]=2 y[n-4]+3 x[n]+7 x[n-1]$
(b) (5 points) $y[n+1]=n^{2} x[|n|]-2 \cos (\pi n) y[n]$
(c) (10 points) $y[n-1]=\sum_{k=-\infty}^{\infty} x[n-k]\left(\frac{1}{5}\right)^{k} u[k]$

