Parameters for undirected Markov random graphs

Density or edge (θ)

Two-star (σ_2)

Three-star (σ_3)

Triangle (τ)

And higher order star configurations
Definition 1 (Kronecker product of matrices) Given two matrices $A = [a_{i,j}]$ and B of sizes $n \times m$ and $n' \times m'$ respectively, the Kronecker product matrix C of dimensions $(n \cdot n') \times (m \cdot m')$ is given by

$$C = A \otimes B = \begin{pmatrix}
a_{1,1}B & a_{1,2}B & \cdots & a_{1,m}B \\
a_{2,1}B & a_{2,2}B & \cdots & a_{2,m}B \\
\vdots & \vdots & \ddots & \vdots \\
a_{n,1}B & a_{n,2}B & \cdots & a_{n,m}B
\end{pmatrix}.$$
(d) Adjacency matrix of K_1

\[
\begin{array}{ccc}
1 & 1 & 0 \\
1 & 1 & 1 \\
0 & 1 & 1 \\
\end{array}
\]

(e) Adjacency matrix of $K_2 = K_1 \otimes K_1$

\[
\begin{array}{ccc}
K_1 & K_1 & 0 \\
K_1 & K_1 & K_1 \\
0 & K_1 & K_1 \\
\end{array}
\]
(a) K_3 adjacency matrix (27×27)

(b) K_4 adjacency matrix (81×81)
Initiator K_1

K_1 adjacency matrix

K_3 adjacency matrix
Theorem 5 (Multinomial degree distribution) Kronecker graphs have multinomial degree distributions, for both in- and out-degrees.

Theorem 6 (Multinomial eigenvalue distribution) The Kronecker graph K_k has a multinomial distribution for its eigenvalues.

Theorem 7 (Multinomial eigenvector distribution) The components of each eigenvector of the Kronecker graph K_k follow a multinomial distribution.

Theorem 12 If K_1 has diameter D and a self-loop on every node, then for every k, the graph K_k also has diameter D.
Definition 14 (Stochastic Kronecker graph) Let P_1 be a $N_1 \times N_1$ probability matrix: the value $\theta_{ij} \in P_1$ denotes the probability that edge (i, j) is present, $\theta_{ij} \in [0, 1]$.

Then k^{th} Kronecker power $P_1^{[k]} = P_k$, where each entry $p_{uv} \in P_k$ encodes the probability of an edge (u, v).

To obtain a graph, an instance (or realization), $K = R(P_k)$ we include edge (u, v) in K with probability $p_{uv}, p_{uv} \in P_k$.