

Centrality

Which nodes are most important or central in network?

Emergence from dynamics and flows.

Eigenvector Centrality

Using degree as notion of centrality, award one point for every neighbor a node has.

But not all nodes are equivalent, since connecting to important nodes makes one more important.

Use a dynamics framework to give score proportional to sum of neighbors.

1. Make initial guess about centrality x_i of each node i, e.g. all $x_i = 1$.
2. Update this to $x' = x_i$ as

$$x' = \sum_j A_{ij} x_j,$$

where A_{ij} is element of adjacency matrix.

So in matrix vector notation:

$$x' = Ax.$$

After t steps, vector is

$$x(t) = A^t x(0).$$

Write $x(0)$ as linear combination of eigenvectors v_i of A:

$$x(0) = \sum_i c_i v_i,$$

for some constants c_i. Then:

$$x(t) = A^t \sum_i c_i v_i = \sum_i c_i \lambda_i^t v_i = \lambda_i^t \sum_i c_i \left[\frac{\lambda_i}{\lambda_2} \right] v_i,$$

where λ_i are the eigenvalues of A, and λ_2 is the largest in abs.

Since $\lambda_i / \lambda_2 < 1$ for all $i \neq 1$, all terms in sum other than first decay exponentially as t becomes large, and so in the limit $t \to \infty$,

$$x(t) \to c_1 \lambda_2^t v_1.$$
So leading vector of centrality is just proportional to first eigenvector of \(A \):

\[
Ax = \lambda x.
\]

So \(x_i \) is proportional to sum of centrality of \(i \)'s neighbors:

\[
x_i = k_i \sum_j A_{ij} x_j.
\]

and can be large either because many neighbors or important neighbors.

This is good for undirected networks, but what about directed networks:

→ generally not symmetric, so two sets of eigenvectors, left, right.

→ use right eigenvector since centrality arises from others pointing to you.

One difficulty that remains with directed networks is that

only vertices in a strongly connected component of two or more vertices,

or the out-component of such a component can have non-zero eigenvector centrality.

(unfortunately DAGs have no strongly connected components of more than one vertex)

How to deal with this issue?

→ give each vertex a little centrality for free

Katz Centrality:

\[
x_i = \alpha \sum_j A_{ij} x_j + \beta,
\]

where \(\alpha, \beta \) are positive constants

with the second term, even vertices with zero in-degree get centrality \(\beta \).

In matrix-vector form:

\[
x = \alpha Ax + \beta 1.
\]

\[
x = (I - \alpha A)^{-1} \beta 1
\]

→ in matrix-vector form:

\[
x = (I - \alpha A)^{-1} \beta 1.
\]
There are distinct approaches for choosing the parameters.

One can, of course, also use Katz centrality for undirected networks.

In many cases it means less if a vertex is only one among many that we point to.

Modify Katz centrality to get PageRank by making centrality proportional to neighbors' centrality but divided by their out-degree.

$$x'_i = \alpha \sum_j A_{ij} \frac{x_j}{k_{out}^j} + \beta$$

A small mathematical difficulty in dividing by 0 when $k_{out}^j = 0$.

Just artificially set $k_{out}^j = 1$ for all such vertices, so vertices with no out-going edges contribute zero to centrality of other nodes.

$$x = \alpha A D^{-1} x + \beta I$$

where D is diagonal matrix with elements $D_{ii} = \max(k_{out}^i, 1)$.

$$x = \beta (I - \alpha A D^{-1})^{-1} I$$, and setting $\beta = 1:

$$x = (I - \alpha A D^{-1})^{-1} I = D(D - \alpha A)^{-1} I.$$

Now use distance/flow rather than dynamics to define centrality.

Closeness Centrality

Mean distance from a node to other nodes.

If d_{ij} is length of geodesic path from i to j then,

$$d_i = \frac{1}{n} \sum_{j} d_{ij}$$

This gives small values for more central vertices and large values for less central ones.

So consider

$$C_i = \frac{1}{d_i} = \frac{n}{\sum d_{ij}}.$$
An alternative is to use the harmonic mean:

\[C_i = \frac{1}{n-1} \sum_{j} \frac{1}{d_{ij}} \]

which actually deals with infinite distances among different concepts.

Betweenness Centrality (flow):

measure the extent to which a vertex lies on paths between other vertices.

\[\Rightarrow \text{ amount of flow passing through each vertex is proportional} \]

\[\text{to number of geodesic paths the vertex lies on.} \]

This is betweenness centrality.

First consider an undirected network in which at most one geodesic path between any two nodes.

\[\Rightarrow \text{consider all geodesic paths in such a network} \]

\[\Rightarrow \text{betweenness centrality is the fraction of those paths that pass through } i. \]

Let \(n_{ij}^e \) be 1 if vertex \(i \) lies on geodesic path from \(st \).

\[0 \text{ else} \]

Then \(X_i = \sum_{st} n_{ij}^e. \)

What if multiple geodesic paths; give weight inversely proportional to this number.

Letting \(N_{ij} \) be total \# geodesic paths from \(st \).

\[X_i = \frac{\sum_{st} n_{ij}^e}{N_{ij}}. \]

Alternatively is to consider all paths for flow rather than just shortest.

Flow betweenness.

Since maximum flow between \(s \) and \(t \) is also number of edge-independent paths between them, so flow betweenness is \# of independent paths that go through \(i \).