
Plan of the Lecture

I Review: Nyquist stability criterion

I Today’s topic: Nyquist stability criterion (more examples);
phase and gain margins from Nyquist plots.

Goal: explore more examples of the Nyquist criterion in action.

Reading: FPE, Chapter 6



Review: Nyquist Plot

Consider an arbitrary transfer function H.

Nyquist plot: ImH(jω) vs. ReH(jω) as ω varies from −∞ to∞
Im H(j!)

Re H(j!)



Review: Nyquist Stability Criterion

G(s) Y
+
�R K

Goal: count the number of RHP poles (if any) of the
closed-loop transfer function

KG(s)

1 +KG(s)

based on frequency-domain characteristics of the plant
transfer function G(s)



The Nyquist Theorem

G(s) Y
+
�R K

Nyquist Theorem (1928) Assume that G(s) has no poles on
the imaginary axis∗, and that its Nyquist plot does not pass
through the point −1/K. Then

N = Z − P
#(� of −1/K by Nyquist plot of G(s))

= #(RHP closed-loop poles)−#(RHP open-loop poles)

∗ Easy to fix: draw an infinitesimally small circular path that goes around
the pole and stays in RHP



The Nyquist Stability Criterion

G(s) Y
+
�R K

N︸︷︷︸
#(� of −1/K)

= Z︸︷︷︸
#(unstable CL poles)

− P︸︷︷︸
#(unstable OL poles)

Z = N + P

Z = 0 ⇐⇒ N = −P

Nyquist Stability Criterion. Under the assumptions of the
Nyquist theorem, the closed-loop system (at a given gain K) is
stable if and only if the Nyquist plot of G(s) encircles the
point −1/K P times counterclockwise, where P is the number
of unstable (RHP) open-loop poles of G(s).



Applying the Nyquist Criterion

Workflow:

Bode M and φ-plots −→ Nyquist plot

Advantages of Nyquist over Routh–Hurwitz

I can work directly with experimental frequency response
data (e.g., if we have the Bode plot based on
measurements, but do not know the transfer function)

I less computational, more geometric (came 55 years after
Routh)



Example 1 (From Last Lecture)

G(s) =
1

(s+ 1)(s+ 2)
(no open-loop RHP poles)

Characteristic equation:

(s+ 1)(s+ 2) +K = 0 ⇐⇒ s2 + 3s+K + 2 = 0

From Routh, we already know that the closed-loop system is
stable for K > −2.

We will now reproduce this answer using the Nyquist criterion.



Example 1

G(s) =
1

(s+ 1)(s+ 2)
(no open-loop RHP poles)

Strategy:

I Start with the Bode plot of G

I Use the Bode plot to graph Im G(jω) vs. Re G(jω) for
0 ≤ ω <∞

I This gives only a portion of the entire Nyquist plot

(Re G(jω), Im G(jω)) , −∞ < ω <∞

I Symmetry:
G(−jω) = G(jω)

— Nyquist plots are always symmetric w.r.t. the real axis!!



Example 1

G(s) =
1

(s+ 1)(s+ 2)
(no open-loop RHP poles)

Bode plot:
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Example 1: Applying the Nyquist Criterion

G(s) =
1

(s+ 1)(s+ 2)
(no open-loop RHP poles)

Nyquist plot:
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#(� of −1/K)

= #(RHP CL poles)−#(RHP OL poles)︸ ︷︷ ︸
=0

=⇒ K ∈ R is stabilizing if and only if

#(� of −1/K) = 0

I If K > 0, #(� of −1/K) = 0

I If 0 < −1/K < 1/2,
#(� of −1/K) > 0 =⇒
closed-loop stable for K > −2



Example 2

G(s) =
1

(s− 1)(s2 + 2s+ 3)
=

1

s3 + s2 + s− 3

#(RHP open-loop poles) = 1 at s = 1

Routh: the characteristic polynomial is

s3 + s2 + s+K − 3 — 3rd degree

— stable if and only if K − 3 > 0 and 1 > K − 3.

Stability range: 3 < K < 4

Let’s see how to spot this using the Nyquist criterion ...



Example 2

G(s) =
1

(s− 1)(s2 + 2s+ 3)
(1 open-loop RHP pole)

Bode plot:
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Nyquist plot:

ω = 0 M = 1/3, φ = −180◦

ω = 1 M = 1/4, φ = −180◦

ω →∞ M → 0, φ→ −270◦
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Example 2: Applying the Nyqiust Criterion

G(s) =
1

(s− 1)(s2 + 2s+ 3)
(1 open-loop RHP pole)

Nyquist plot:
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#(� of −1/K)

= #(RHP CL poles)

−#(RHP OL poles)︸ ︷︷ ︸
=1

K ∈ R is stabilizing if
and only if

#(� of −1/K) = −1

Which points −1/K are
encircled once 	 by this
Nyquist plot?

only − 1/3 < −1/K < −1/4

=⇒ 3 < K < 4



Example 2: Nyquist Criterion and Phase Margin

Closed-loop stability range for G(s) =
1

(s− 1)(s2 + 2s+ 3)
is

3 < K < 4 (using either Routh or Nyquist).

We can interpret this in terms of phase margin:
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for 3 < K < 4, !c is here

So, in this case, stability ⇐⇒ PM > 0 (typical case).



Example 3

G(s) =
s− 1

(s+ 2)(s2 − s+ 1)
=

s− 1

s3 + s2 − s+ 2

Open-loop poles:

s = −2 (LHP)

s2 − s+ 1 = 0(
s− 1

2

)2

+
3

4
= 0

s =
1

2
± j
√

3

2
(RHP)

∴ 2 RHP poles



Example 3

G(s) =
s− 1

(s+ 2)(s2 − s+ 1)
=

s− 1

s3 + s2 − s+ 2

Routh:

char. poly. s3 + s2 − s+ 2 +K(s− 1)

s2 + s2 + (K − 1)s+ 2−K (3rd-order)

— stable if and only if

K − 1 > 0

2−K > 0

K − 1 > 2−K

— stability range is 3/2 < K < 2



Example 3

G(s) =
s− 1

(s+ 2)(s2 − s+ 1)
(2 open-loop RHP poles)

Bode plot (tricky, RHP
poles/zeros)
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φ = 180◦ when:

I ω = 0 and ω → 0

I ω = 1/
√

2:

jω − 1

(jω − 1)((jω)2 − jω + 1)

∣∣∣
ω=1/

√
2
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j√
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− 1(

j√
2
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)(
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(
j√
2
− 1
) = −2

3

(need to guess this, e.g., by
mouseclicking in Matlab)



Example 3

G(s) =
s− 1

s3 + s2 − s+ 2
(2 open-loop RHP poles)

Bode plot:
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Nyquist plot:

ω = 0 M = 1/2, φ = 180◦

ω = 1/
√

2 M = 2/3, φ = 180◦

ω →∞ M → 0, φ→ 180◦
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Example 3: Applying the Nyqiust Criterion

G(s) =
s− 1

s3 + s2 − s+ 2
(2 open-loop RHP poles)

Nyquist plot:
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= #(RHP CL poles)

−#(RHP OL poles)︸ ︷︷ ︸
=2

K ∈ R is stabilizing if
and only if

#(� of −1/K) = −2

Which points −1/K are
encircled twice 	 by this
Nyquist plot?

only − 2/3 < −1/K < −1/2

=⇒ 3

2
< K < 2



Example 2: Nyquist Criterion and Phase Margin

CL stability range for G(s) =
s− 1

s3 + s2 − s+ 2
: K ∈ (3/2, 2)

We can interpret this in terms of phase margin:
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for 3/2 < K < 2, !c is here

So, in this case, stability ⇐⇒ PM < 0 (atypical case; Nyquist
criterion is the only way to resolve this ambiguity of Bode
plots).



Stability Margins
How do we determine stability margins (GM & PM) from the
Nyquist plot?

GM & PM are defined relative to a given K, so consider
Nyquist plot of KG(s) (we only draw the ω > 0 portion):

�M180�

'�1

1 How do we spot GM & PM?

I GM = 1/M180◦

— if we divide K by M180◦ ,
then the Nyquist plot will
pass through (−1, 0),
giving M = 1, φ = 180◦

I PM = ϕ

— the phase difference
from 180◦ when M = 1


