Plan of the Lecture

- Review: Nyquist stability criterion
- Today's topic: Nyquist stability criterion (more examples); phase and gain margins from Nyquist plots.

Goal: explore more examples of the Nyquist criterion in action.

Reading: FPE, Chapter 6

Review: Nyquist Plot

Consider an arbitrary transfer function H.
Nyquist plot: $\operatorname{Im} H(j \omega)$ vs. $\operatorname{Re} H(j \omega)$ as ω varies from $-\infty$ to ∞

Review: Nyquist Stability Criterion

Goal: count the number of RHP poles (if any) of the closed-loop transfer function

$$
\frac{K G(s)}{1+K G(s)}
$$

based on frequency-domain characteristics of the plant transfer function $G(s)$

The Nyquist Theorem

Nyquist Theorem (1928) Assume that $G(s)$ has no poles on the imaginary axis*, and that its Nyquist plot does not pass through the point $-1 / K$. Then

$$
\begin{aligned}
& N= Z-P \\
& \#(\circlearrowright \text { of }-1 / K \text { by Nyquist plot of } G(s)) \\
&=\#(\text { RHP closed-loop poles })-\#(\text { RHP open-loop poles })
\end{aligned}
$$

[^0]
The Nyquist Stability Criterion

$$
\begin{aligned}
& \underbrace{N}_{\text {\#(仓 of }-1 / K)}=\underbrace{Z}_{\# \text { (unstable CL poles) }}-\underbrace{P}_{\# \text { (unstable OL poles) }} \\
& Z=N+P \\
& Z=0 \quad \Longleftrightarrow \quad N=-P
\end{aligned}
$$

Nyquist Stability Criterion. Under the assumptions of the Nyquist theorem, the closed-loop system (at a given gain K) is stable if and only if the Nyquist plot of $G(s)$ encircles the point $-1 / K P$ times counterclockwise, where P is the number of unstable (RHP) open-loop poles of $G(s)$.

Applying the Nyquist Criterion

Workflow:
Bode M and ϕ-plots $\quad \longrightarrow \quad$ Nyquist plot
Advantages of Nyquist over Routh-Hurwitz

- can work directly with experimental frequency response data (e.g., if we have the Bode plot based on measurements, but do not know the transfer function)
- less computational, more geometric (came 55 years after Routh)

Example 1 (From Last Lecture)

$$
G(s)=\frac{1}{(s+1)(s+2)}
$$

(no open-loop RHP poles)

Characteristic equation:

$$
(s+1)(s+2)+K=0 \quad \Longleftrightarrow \quad s^{2}+3 s+K+2=0
$$

From Routh, we already know that the closed-loop system is stable for $K>-2$.

We will now reproduce this answer using the Nyquist criterion.

Example 1

$$
G(s)=\frac{1}{(s+1)(s+2)}
$$

(no open-loop RHP poles)

Strategy:

- Start with the Bode plot of G
- Use the Bode plot to graph $\operatorname{Im} G(j \omega)$ vs. $\operatorname{Re} G(j \omega)$ for $0 \leq \omega<\infty$
- This gives only a portion of the entire Nyquist plot

$$
(\operatorname{Re} G(j \omega), \operatorname{Im} G(j \omega)), \quad-\infty<\omega<\infty
$$

- Symmetry:

$$
G(-j \omega)=\overline{G(j \omega)}
$$

- Nyquist plots are always symmetric w.r.t. the real axis!!

Example 1

$$
G(s)=\frac{1}{(s+1)(s+2)}
$$

(no open-loop RHP poles)

Bode plot:

Nyquist plot:

Example 1: Applying the Nyquist Criterion

$$
G(s)=\frac{1}{(s+1)(s+2)}
$$

(no open-loop RHP poles)

Nyquist plot:

$$
\begin{aligned}
& \#(\circlearrowright \text { of }-1 / K) \\
& =\#(\text { RHP CL poles })-\underbrace{\#(\text { RHP OL poles })}_{=0}
\end{aligned}
$$

$\Longrightarrow K \in \mathbb{R}$ is stabilizing if and only if

$$
\#(\circlearrowright \text { of }-1 / K)=0
$$

- If $K>0, \#(\circlearrowright$ of $-1 / K)=0$
- If $0<-1 / K<1 / 2$, $\#(\circlearrowright$ of $-1 / K)>0 \Longrightarrow$ closed-loop stable for $K>-2$

Example 2

$$
\begin{aligned}
& G(s)=\frac{1}{(s-1)\left(s^{2}+2 s+3\right)}=\frac{1}{s^{3}+s^{2}+s-3} \\
& \#(\text { RHP open-loop poles })=1 \quad \text { at } s=1
\end{aligned}
$$

Routh: the characteristic polynomial is

$$
s^{3}+s^{2}+s+K-3 \quad-\text { 3rd degree }
$$

- stable if and only if $K-3>0$ and $1>K-3$.

Stability range:

$$
3<K<4
$$

Let's see how to spot this using the Nyquist criterion ...

Example 2

$$
G(s)=\frac{1}{(s-1)\left(s^{2}+2 s+3\right)}
$$

Bode plot:

(1 open-loop RHP pole)

Nyquist plot:

$$
\begin{array}{rl}
\omega=0 & M=1 / 3, \phi=-180^{\circ} \\
\omega=1 & M=1 / 4, \phi=-180^{\circ} \\
\omega \rightarrow \infty & M \rightarrow 0, \phi \rightarrow-270^{\circ}
\end{array}
$$

Example 2: Applying the Nyqiust Criterion

$$
G(s)=\frac{1}{(s-1)\left(s^{2}+2 s+3\right)}
$$

(1 open-loop RHP pole)

Nyquist plot:

$K \in \mathbb{R}$ is stabilizing if and only if

$$
\#(\circlearrowright \text { of }-1 / K)=-1
$$

Which points $-1 / K$ are encircled once \circlearrowleft by this
Nyquist plot?

$$
\begin{aligned}
& \#(\circlearrowright \text { of }-1 / K) \\
& =\#(\text { RHP CL poles }) \\
& \quad-\underbrace{\#(\text { RHP OL poles })}_{=1}
\end{aligned}
$$

$$
\begin{aligned}
\text { only } & -1 / 3<-1 / K<-1 / 4 \\
& \Longrightarrow 3<K<4
\end{aligned}
$$

Example 2: Nyquist Criterion and Phase Margin

Closed-loop stability range for $G(s)=\frac{1}{(s-1)\left(s^{2}+2 s+3\right)}$ is
$3<K<4$ (using either Routh or Nyquist).
We can interpret this in terms of phase margin:

So, in this case, stability $\Longleftrightarrow P M>0$ (typical case).

Example 3

$$
G(s)=\frac{s-1}{(s+2)\left(s^{2}-s+1\right)}=\frac{s-1}{s^{3}+s^{2}-s+2}
$$

Open-loop poles:

$$
\begin{align*}
& s=-2 \tag{LHP}\\
& s^{2}-s+1=0 \\
& \left(s-\frac{1}{2}\right)^{2}+\frac{3}{4}=0 \\
& s=\frac{1}{2} \pm j \frac{\sqrt{3}}{2} \tag{RHP}
\end{align*}
$$

$\therefore 2$ RHP poles

Example 3

$$
G(s)=\frac{s-1}{(s+2)\left(s^{2}-s+1\right)}=\frac{s-1}{s^{3}+s^{2}-s+2}
$$

Routh:
char. poly. $s^{3}+s^{2}-s+2+K(s-1)$

$$
s^{2}+s^{2}+(K-1) s+2-K \quad(3 \text { rd-order })
$$

- stable if and only if

$$
\begin{aligned}
& K-1>0 \\
& 2-K>0 \\
& K-1>2-K
\end{aligned}
$$

stability range is $3 / 2<K<2$

Example 3

$$
G(s)=\frac{s-1}{(s+2)\left(s^{2}-s+1\right)}
$$

(2 open-loop RHP poles)

Bode plot (tricky, RHP poles/zeros)

$$
\begin{aligned}
& \phi=180^{\circ} \text { when: } \\
& \text { - } \omega=0 \text { and } \omega \rightarrow 0 \\
& \text { - } \omega=1 / \sqrt{2}:
\end{aligned}
$$

$$
\left.\frac{j \omega-1}{(j \omega-1)\left((j \omega)^{2}-j \omega+1\right)}\right|_{\omega=1 / \sqrt{2}}
$$

$$
=\frac{\frac{j}{\sqrt{2}}-1}{\left(\frac{j}{\sqrt{2}}+2\right)\left(-\frac{1}{2}-\frac{j}{\sqrt{2}}+1\right)}
$$

$$
=\frac{\frac{j}{\sqrt{2}}-1}{-\frac{3}{2}\left(\frac{j}{\sqrt{2}}-1\right)}=-\frac{2}{3}
$$

(need to guess this, e.g., by mouseclicking in Matlab)

Example 3

$$
G(s)=\frac{s-1}{s^{3}+s^{2}-s+2}
$$

Bode plot:

(2 open-loop RHP poles)

Nyquist plot:

$$
\begin{array}{rl}
\omega=0 & M=1 / 2, \phi=180^{\circ} \\
\omega=1 / \sqrt{2} & M=2 / 3, \phi=180^{\circ} \\
\omega \rightarrow \infty & M \rightarrow 0, \phi \rightarrow 180^{\circ}
\end{array}
$$

Example 3: Applying the Nyqiust Criterion

$$
G(s)=\frac{s-1}{s^{3}+s^{2}-s+2}
$$

(2 open-loop RHP poles)
Nyquist plot:

$$
\begin{aligned}
& \#(\circlearrowright \text { of }-1 / K) \\
& =\#(\text { RHP CL poles }) \\
& \quad-\underbrace{\#(\text { RHP OL poles })}_{=2}
\end{aligned}
$$

$K \in \mathbb{R}$ is stabilizing if and only if

$$
\#(\circlearrowright \text { of }-1 / K)=-2
$$

Which points $-1 / K$ are encircled twice \circlearrowleft by this Nyquist plot?

$$
\begin{aligned}
\text { only } & -2 / 3<-1 / K<-1 / 2 \\
& \Longrightarrow \frac{3}{2}<K<2
\end{aligned}
$$

Example 2: Nyquist Criterion and Phase Margin

 CL stability range for $G(s)=\frac{s-1}{s^{3}+s^{2}-s+2}: K \in(3 / 2,2)$We can interpret this in terms of phase margin:

So, in this case, stability $\Longleftrightarrow \mathrm{PM}<0$ (atypical case; Nyquist criterion is the only way to resolve this ambiguity of Bode plots).

Stability Margins

How do we determine stability margins (GM \& PM) from the Nyquist plot?

GM \& PM are defined relative to a given K, so consider Nyquist plot of $K G(s)$ (we only draw the $\omega>0$ portion):

How do we spot GM \& PM?

- $\mathrm{GM}=1 / M_{180^{\circ}}$
— if we divide K by $M_{180^{\circ}}$, then the Nyquist plot will pass through $(-1,0)$, giving $M=1, \phi=180^{\circ}$
- $\mathrm{PM}=\varphi$
- the phase difference from 180° when $M=1$

[^0]: * Easy to fix: draw an infinitesimally small circular path that goes around the pole and stays in RHP

