#### Plan of the Lecture

- ▶ Review: Nyquist stability criterion
- ► Today's topic: Nyquist stability criterion (more examples); phase and gain margins from Nyquist plots.

Goal: explore more examples of the Nyquist criterion in action.

Reading: FPE, Chapter 6

# Review: Nyquist Plot

Consider an arbitrary transfer function H.

Nyquist plot: Im  $H(j\omega)$  vs. Re  $H(j\omega)$  as  $\omega$  varies from  $-\infty$  to  $\infty$ 



# Review: Nyquist Stability Criterion



Goal: count the number of RHP poles (if any) of the closed-loop transfer function

 $\frac{KG(s)}{1+KG(s)}$ 

based on frequency-domain characteristics of the plant transfer function  ${\cal G}(s)$ 

# The Nyquist Theorem



Nyquist Theorem (1928) Assume that G(s) has no poles on the imaginary axis<sup>\*</sup>, and that its Nyquist plot does not pass through the point -1/K. Then

$$N = Z - P$$
  
#( $\bigcirc$  of  $-1/K$  by Nyquist plot of  $G(s)$ )  
= #(RHP closed-loop poles) - #(RHP open-loop poles)

 $^{\ast}$  Easy to fix: draw an infinite simally small circular path that goes around the pole and stays in RHP

# The Nyquist Stability Criterion



Nyquist Stability Criterion. Under the assumptions of the Nyquist theorem, the closed-loop system (at a given gain K) is stable *if and only if* the Nyquist plot of G(s) encircles the point -1/K P times *counterclockwise*, where P is the number of unstable (RHP) open-loop poles of G(s).

Applying the Nyquist Criterion

Workflow:

Bode M and  $\phi$ -plots  $\longrightarrow$  Nyquist plot

Advantages of Nyquist over Routh–Hurwitz

- can work directly with experimental frequency response data (e.g., if we have the Bode plot based on measurements, but do not know the transfer function)
- less computational, more geometric (came 55 years after Routh)

# Example 1 (From Last Lecture)

$$G(s) = \frac{1}{(s+1)(s+2)}$$
 (no open-loop RHP poles)

Characteristic equation:

$$(s+1)(s+2) + K = 0 \qquad \iff \qquad s^2 + 3s + K + 2 = 0$$

From Routh, we already know that the closed-loop system is stable for K > -2.

We will now reproduce this answer using the Nyquist criterion.

$$G(s) = \frac{1}{(s+1)(s+2)}$$
 (no open-loop RHP poles)

Strategy:

- Start with the Bode plot of G
- ► Use the Bode plot to graph Im  $G(j\omega)$  vs. Re  $G(j\omega)$  for  $0 \le \omega < \infty$
- ▶ This gives only a *portion* of the entire Nyquist plot

$$(\operatorname{Re} G(j\omega), \operatorname{Im} G(j\omega)), \quad -\infty < \omega < \infty$$

► Symmetry:

$$G(-j\omega) = \overline{G(j\omega)}$$

— Nyquist plots are always symmetric w.r.t. the real axis!!

$$G(s) = \frac{1}{(s+1)(s+2)}$$

Bode plot:



(no open-loop RHP poles)



Example 1: Applying the Nyquist Criterion

$$G(s) = \frac{1}{(s+1)(s+2)}$$
 (no open-loop RHP poles)



 $#(\circlearrowright \text{ of } -1/K) = #(\text{RHP CL poles}) - \underbrace{\#(\text{RHP OL poles})}_{=0}$ 

 $\Longrightarrow K \in \mathbb{R}$  is stabilizing if and only if

 $\#(\circlearrowright \text{ of } -1/K) = 0$ 

- If K > 0,  $\#(\circlearrowright \text{ of } -1/K) = 0$
- ► If 0 < -1/K < 1/2, #( $\circlearrowright$  of -1/K) > 0  $\Longrightarrow$ closed-loop stable for K > -2

$$G(s) = \frac{1}{(s-1)(s^2+2s+3)} = \frac{1}{s^3+s^2+s-3}$$
  
#(RHP open-loop poles) = 1 at s = 1

Routh: the characteristic polynomial is

$$s^3 + s^2 + s + K - 3$$
 — 3rd degree

— stable if and only if K - 3 > 0 and 1 > K - 3. Stability range: 3 < K < 4Let's see how to spot this using the Nyquist criterion ...

$$G(s) = \frac{1}{(s-1)(s^2 + 2s + 3)}$$

Bode plot:



(1 open-loop RHP pole)

Nyquist plot:

$$\begin{split} \omega &= 0 \quad M = 1/3, \ \phi = -180^{\circ} \\ \omega &= 1 \quad M = 1/4, \ \phi = -180^{\circ} \\ \omega &\to \infty \quad M \to 0, \ \phi \to -270^{\circ} \end{split}$$



Example 2: Applying the Nyqiust Criterion

$$G(s) = \frac{1}{(s-1)(s^2+2s+3)}$$

(1 open-loop RHP pole)

Nyquist plot:



$$\begin{array}{l} \#(\circlearrowright \text{ of } -1/K) \\ = \#(\text{RHP CL poles}) \\ - \underbrace{\#(\text{RHP OL poles})}_{=1} \end{array}$$

 $K \in \mathbb{R}$  is stabilizing if and only if

 $\#(\circlearrowright \text{ of } -1/K) = -1$ 

Which points -1/K are encircled once  $\bigcirc$  by this Nyquist plot?

only 
$$-1/3 < -1/K < -1/4$$
  
 $\implies 3 < K < 4$ 

Example 2: Nyquist Criterion and Phase Margin

Closed-loop stability range for  $G(s) = \frac{1}{(s-1)(s^2+2s+3)}$  is 3 < K < 4 (using either Routh or Nyquist).

We can interpret this in terms of phase margin:



So, in this case, stability  $\iff PM > 0$  (typical case).

$$G(s) = \frac{s-1}{(s+2)(s^2-s+1)} = \frac{s-1}{s^3+s^2-s+2}$$

Open-loop poles:

$$s = -2 \qquad \text{(LHP)}$$

$$s^{2} - s + 1 = 0$$

$$\left(s - \frac{1}{2}\right)^{2} + \frac{3}{4} = 0$$

$$s = \frac{1}{2} \pm j\frac{\sqrt{3}}{2} \qquad \text{(RHP)}$$

 $\therefore~2$  RHP poles

$$G(s) = \frac{s-1}{(s+2)(s^2-s+1)} = \frac{s-1}{s^3+s^2-s+2}$$

#### Routh:

char. poly. 
$$s^3 + s^2 - s + 2 + K(s - 1)$$
  
 $s^2 + s^2 + (K - 1)s + 2 - K$  (3rd-order)

— stable if and only if

$$K - 1 > 0$$
$$2 - K > 0$$
$$K - 1 > 2 - K$$

— stability range is 3/2 < K < 2

$$G(s) = \frac{s-1}{(s+2)(s^2 - s + 1)}$$

Bode plot (tricky, RHP poles/zeros)



(2 open-loop RHP poles)

 $\phi=180^\circ$  when:

$$\frac{j\omega - 1}{(j\omega - 1)((j\omega)^2 - j\omega + 1)}\Big|_{\omega = 1/\sqrt{2}}$$
$$= \frac{\frac{j}{\sqrt{2}} - 1}{\left(\frac{j}{\sqrt{2}} + 2\right)\left(-\frac{1}{2} - \frac{j}{\sqrt{2}} + 1\right)}$$
$$= \frac{\frac{j}{\sqrt{2}} - 1}{-\frac{3}{2}\left(\frac{j}{\sqrt{2}} - 1\right)} = -\frac{2}{3}$$

(need to guess this, e.g., by mouseclicking in Matlab)

$$G(s) = \frac{s-1}{s^3 + s^2 - s + 2}$$

Bode plot:



(2 open-loop RHP poles)

Nyquist plot:

$$\begin{split} \omega &= 0 \quad M = 1/2, \ \phi = 180^{\circ} \\ \omega &= 1/\sqrt{2} \quad M = 2/3, \ \phi = 180^{\circ} \\ \omega &\to \infty \quad M \to 0, \ \phi \to 180^{\circ} \end{split}$$



Example 3: Applying the Nyquist Criterion  $G(s) = \frac{s-1}{s^3 + s^2 - s + 2}$ 

Nyquist plot:



 $\#(\circlearrowright \text{ of } -1/K)$ = #(RHP CL poles)- #(RHP OL poles) =2

(2 open-loop RHP poles)

 $K \in \mathbb{R}$  is stabilizing if and only if

 $\#(\bigcirc \text{ of } -1/K) = -2$ 

Which points -1/K are encircled twice  $\bigcirc$  by this Nyquist plot?

only 
$$-2/3 < -1/K < -1/2$$
  
 $\implies \frac{3}{2} < K < 2$ 

Example 2: Nyquist Criterion and Phase Margin CL stability range for  $G(s) = \frac{s-1}{s^3 + s^2 - s + 2}$ :  $K \in (3/2, 2)$ 

We can interpret this in terms of phase margin:



So, in this case, stability  $\iff PM < 0$  (atypical case; Nyquist criterion is the only way to resolve this ambiguity of Bode plots).

Stability Margins

How do we determine stability margins (GM & PM) from the Nyquist plot?

GM & PM are defined relative to a given K, so consider Nyquist plot of KG(s) (we only draw the  $\omega > 0$  portion):



How do we spot GM & PM?

• GM =  $1/M_{180^{\circ}}$ 

— if we divide K by M<sub>180°</sub>, then the Nyquist plot will pass through (−1, 0), giving M = 1, φ = 180°
PM = φ

— the phase difference from  $180^{\circ}$  when M = 1