Plan of the Lecture

- Review: control design using frequency response
- Today's topic: Nyquist stability criterion

Goal: learn how to detect the presence of RHP poles of the closed-loop transfer function as the gain K is varied using frequency-response data

Reading: FPE, Chapter 6

Review: Frequency Domain Design Method

Design based on Bode plots is good for:

- easily visualizing the concepts

- evaluating the design and seeing which way to change it
- using experimental data (frequency response of the uncontrolled system can be measured experimentally)

Review: Frequency Domain Design Method

Design based on Bode plots is not good for:

- exact closed-loop pole placement (root locus is more suitable for that)
- deciding if a given K is stabilizing or not ...
- we can only measure how far we are from instability (using GM or PM), if we know that we are stable
- however, we don't have a way of checking whether a given K is stabilizing from frequency response data

What we want is a frequency-domain substitute for the
Routh-Hurwitz criterion - this is the Nyquist criterion, which we will discuss in today's lecture.

Nyquist Stability Criterion

Goal: count the number of RHP poles (if any) of the closed-loop transfer function

$$
\frac{K G(s)}{1+K G(s)}
$$

based on frequency-domain characteristics of the plant transfer function $G(s)$

Review: Nyquist Plot

Consider an arbitrary strictly proper transfer function H :

$$
H(s)=\frac{\left(s-z_{1}\right) \ldots\left(s-z_{m}\right)}{\left(s-p_{1}\right) \ldots\left(s-p_{n}\right)}, \quad m<n
$$

Nyquist plot: $\operatorname{Im} H(j \omega)$ vs. $\operatorname{Re} H(j \omega)$ as ω varies from $-\infty$ to ∞

Nyquist Plot as a Mapping of the s-Plane

We can view the Nyquist plot of H as the image of the imaginary axis $\{j \omega:-\infty<\omega<\infty\}$ under the mapping $H: \mathbb{C} \rightarrow \mathbb{C}$

Transformation of a Closed Contour Under H

If we choose any closed curve (or contour) C on the left, it will get mapped by H to some other curve (contour) on the right:

Important: when working with contours in the complex plane, always keep track of the direction in which we traverse the contour (clockwise vs. counterclockwise)!!

Phase of H Along a Contour

For any $s \in \mathbb{C}$, the phase (or argument) of $H(s)$ is

$$
\begin{aligned}
\angle H(s) & =\angle \frac{\left(s-z_{1}\right) \ldots\left(s-z_{m}\right)}{\left(s-p_{1}\right) \ldots\left(s-p_{n}\right)} \\
& =\sum_{i=1}^{m} \angle\left(s-z_{i}\right)-\sum_{j=1}^{n} \angle\left(s-p_{j}\right) \\
& =\sum_{i=1}^{m} \psi_{i}-\sum_{j=1}^{n} \varphi_{j}
\end{aligned}
$$

We are interested in how $\angle H(s)$ changes as s traverses a closed, clockwise (\circlearrowright) oriented contour C in the complex plane.

We will look at several cases, depending on how the contour is located relative to poles and zeros of H.

Case 1: Contour Encircles a Zero

Suppose that C is a closed, \circlearrowright-oriented contour in \mathbb{C} that encircles a zero of $H(s)$:

How does $\angle H(s)$ change as we go around C ?

Case 1: Contour Encircles a Zero

How does $\angle H(s)$ change as we go around C ?
Let's see what happens to angles from s to poles/zeros of H :

- φ_{1} and φ_{2} return to their original values
- ψ_{1} picks up a net change of -360°
- therefore, $\angle H(s)$ picks up a net change of -360°, so $H(C)$ encircles the origin once, clockwise (仓)

Case 2: Contour Encircles a Pole

Suppose that C is a closed, \circlearrowright-oriented contour in \mathbb{C} that encircles a pole of $H(s)$:

How does $\angle H(s)$ change as we go around C ?

Case 2: Contour Encircles a Pole

How does $\angle H(s)$ change as we go around C ?
Let's see what happens to angles from s to poles/zeros of H :

- φ_{1} and ψ_{1} return to their original values
- φ_{2} picks up a net change of -360°
- therefore, $\angle H(s)$ picks up a net change of 360°, so $H(C)$ encircles the origin once counterclockwise ($\circlearrowleft)$

Case 3: Contour Encircles No Poles or Zeros

Suppose that C is a closed, \circlearrowright-oriented contour in \mathbb{C} that does not encircle any poles or zeros of $H(s)$:

How does $\angle H(s)$ change as we go around C ?

Case 3: Contour Encircles No Poles or Zeros

How does $\angle H(s)$ change as we go around C ?
Let's see what happens to angles from s to poles/zeros of H :

- $\varphi_{1}, \varphi_{2}, \psi_{1}$ all return to their original values
- therefore, no net change in $\angle H(s)$, so $H(C)$ does not encircle the origin

The Argument Principle

These special cases all lead to the following general result:
The Argument Principle. Let C be a closed, clockwise 〕 oriented contour not passing through any zeros or poles* of $H(s)$. Let $H(C)$ be the image of C under the map $s \mapsto H(s)$:

$$
H(C)=\{H(s): s \in \mathbb{C}\} .
$$

Then:

$$
\begin{aligned}
& \#(\text { clockwise encirclements } \circlearrowright \text { of } 0 \text { by } H(C)) \\
& =\#(\text { zeros of } H(s) \text { inside } C)-\#(\text { poles of } H(S) \text { inside } C) .
\end{aligned}
$$

More succinctly,

$$
N=Z-P
$$

[^0]
The Argument Principle

$$
N=Z-P
$$

- If $N<0$, it means that $H(C)$ encircles the origin counterclockwise (\circlearrowleft).
- We do not want C to pass through any pole of H because then $H(C)$ would not be defined.
- We also do not want C to pass through any zero of H because then $0 \in H(C)$, so \#(encirclements) is not well-defined.

From Argument Principle to Nyquist Criterion

- We are interested in RHP poles, so let's choose a suitable contour C that encloses the RHP:

Harry Nyquist (1889-1976)

- From now on, $C=$ imaginary axis plus the "path around infinity."
- If H is strictly proper, then $H(\infty)=0$.

From Argument Principle to Nyquist Criterion

Harry Nyquist (1889-1976)

With this choice of C,

$$
H(C)=\text { Nyquist plot of } H
$$

(image of the imaginary axis under the map $H: \mathbb{C} \rightarrow \mathbb{C} ;$ if H is strictly proper, $0=H(\infty))$

From Argument Principle to Nyquist Criterion

$H(C)=$ Nyquist plot of H

We are interested in RHP roots of $1+K G(s)$, where G is the plant transfer function.
Thus, we choose $H(s)=1+K G(s)$

From Argument Principle to Nyquist Criterion

We now examine the Nyquist plot of $H(s)=1+K G(s)$.
By the argument principle,

$$
N=Z-P,
$$

where $N=\#$ (仓 encirclements of 0 by Nyquist plot of $1+K G(s))$,
$Z=\#($ zeros of $1+K G(s)$ inside $C)$, $P=\#($ poles of $1+K G(s)$ inside $C)$

Now we extract information about RHP roots of $1+K G(s)$

Nyquist Criterion: N

$$
\begin{aligned}
N & =\#(\circlearrowright \text { encirclements of } 0 \text { by Nyquist plot of } 1+K G(s)) \\
& =\#(\circlearrowright \text { encirclements of }-1 \text { by Nyquist plot of } K G(s)) \\
& =\#(\circlearrowright \text { encirclements of }-1 / K \text { by Nyquist plot of } G(s))
\end{aligned}
$$

- can be read off the Nyquist plot of the open-loop t.f. G!!

Nyquist Criterion: Z

$$
\begin{aligned}
G(s) & =\frac{q(s)}{p(s)}, \quad \operatorname{deg}(q) \leq \operatorname{deg}(p) \\
1+K G(s) & =\frac{p(s)+K q(s)}{p(s)} \\
\text { closed-loop t.f. } & =\frac{K G(s)}{1+K G(s)}=\frac{K q(s)}{p(s)+K q(s)}
\end{aligned}
$$

Therefore:

$$
\begin{aligned}
Z & =\#(\text { zeros of } 1+K G(s) \text { inside } C) \\
& =\#(\text { RHP zeros of } 1+K G(s)) \\
& =\#(\text { RHP closed-loop poles })
\end{aligned}
$$

Nyquist Criterion: P

$$
\begin{gathered}
R \xrightarrow{+} \longrightarrow \text { K } \\
G(s)=\frac{q(s)}{p(s)}, \quad \operatorname{deg}(q) \leq \operatorname{deg}(p) \\
1+K G(s)=1+K \frac{q(s)}{p(s)}=\frac{p(s)+K q(s)}{p(s)}
\end{gathered}
$$

Therefore:

$$
\begin{aligned}
P & =\#(\text { poles of } 1+K G(s) \text { inside } C) \\
& =\#(\text { RHP poles of } 1+K G(s)) \\
& =\#(\text { RHP roots of } p(s)) \\
& =\#(\text { RHP open-loop poles })
\end{aligned}
$$

The Nyquist Theorem

Nyquist Theorem (1928) Assume that $G(s)$ has no poles on the imaginary axis*, and that its Nyquist plot does not pass through the point $-1 / K$. Then

$$
\begin{aligned}
& N= Z-P \\
& \#(\circlearrowright \text { of }-1 / K \text { by Nyquist plot of } G(s)) \\
&=\#(\text { RHP closed-loop poles })-\#(\text { RHP open-loop poles })
\end{aligned}
$$

[^1]
The Nyquist Stability Criterion

$$
\begin{aligned}
& \underbrace{N}_{\#(0 \text { of }-1 / K)}=\underbrace{Z}_{\# \text { (unstable CL poles) }}-\underbrace{P}_{\# \text { (unstable OL poles) }} \\
& Z=N+P \\
& Z=0 \quad \Longrightarrow N=-P
\end{aligned}
$$

Nyquist Stability Criterion. Under the assumptions of the Nyquist theorem, the closed-loop system (at a given gain K) is stable if and only if the Nyquist plot of $G(s)$ encircles the point $-1 / K P$ times counterclockwise, where P is the number of unstable (RHP) open-loop poles of $G(s)$.

Applying the Nyquist Criterion

Workflow:
Bode M and ϕ-plots $\quad \longrightarrow \quad$ Nyquist plot
Advantages of Nyquist over Routh-Hurwitz

- can work directly with experimental frequency response data (e.g., if we have the Bode plot based on measurements, but do not know the transfer function)
- less computational, more geometric (came 55 years after Routh)

Example

$$
G(s)=\frac{1}{(s+1)(s+2)}
$$

(no open-loop RHP poles)

Characteristic equation:

$$
(s+1)(s+2)+K=0 \quad \Longleftrightarrow \quad s^{2}+3 s+K+2=0
$$

From Routh, we already know that the closed-loop system is stable for $K>-2$.

We will now reproduce this answer using the Nyquist criterion.

Example

$$
G(s)=\frac{1}{(s+1)(s+2)}
$$

(no open-loop RHP poles)

Strategy:

- Start with the Bode plot of G
- Use the Bode plot to graph $\operatorname{Im} G(j \omega)$ vs. $\operatorname{Re} G(j \omega)$ for $0 \leq \omega<\infty$
- This gives only a portion of the entire Nyquist plot

$$
(\operatorname{Re} G(j \omega), \operatorname{Im} G(j \omega)), \quad-\infty<\omega<\infty
$$

- Symmetry:

$$
G(-j \omega)=\overline{G(j \omega)}
$$

- Nyquist plots are always symmetric w.r.t. the real axis!!

Example

$$
G(s)=\frac{1}{(s+1)(s+2)}
$$

(no open-loop RHP poles)

Bode plot:

Nyquist plot:

Example: Applying the Nyquist Criterion

$$
G(s)=\frac{1}{(s+1)(s+2)}
$$

(no open-loop RHP poles)

Nyquist plot:

$$
\begin{aligned}
& \#(\circlearrowright \text { of }-1 / K) \\
& =\#(\text { RHP CL poles })-\underbrace{\#(\text { RHP OL poles })}_{=0}
\end{aligned}
$$

$\Longrightarrow K \in \mathbb{R}$ is stabilizing if and only if

$$
\#(\circlearrowright \text { of }-1 / K)=0
$$

- If $K>0, \#(\circlearrowright$ of $-1 / K)=0$
- If $0<-1 / K<1 / 2$, $\#(\circlearrowright)$ of $-1 / K)>0 \Longrightarrow$ closed-loop stable for $K>-2$

[^0]: * will see the reason for this later ...

[^1]: * Easy to fix: draw an infinitesimally small circular path that goes around the pole and stays in RHP

