Plan of the Lecture

- ▶ Review: stability from frequency response
- ▶ Today's topic: control design using frequency response

Goal: understand the effect of various types of controllers (PD/lead, PI/lag) on the closed-loop performance by reading the open-loop Bode plot; develop frequency-response techniques for shaping transient and steady-state response using dynamic compensation

Reading: FPE, Chapter 6

Review: Phase Margin for 2nd-Order System

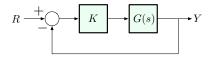
$$G(s) = \frac{\omega_n^2}{s^2 + 2\zeta\omega_n s}, \qquad \text{closed-loop t.f.} = \frac{\omega_n^2}{s^2 + 2\zeta\omega_n s + \omega_n^2}$$
$$\mathrm{PM}\Big|_{K=1} = \tan^{-1}\left(\frac{2\zeta}{\sqrt{4\zeta^4 + 1} - 2\zeta^2}\right) \approx 100 \cdot \zeta$$

Conclusions:

 $\begin{array}{ccc} & \text{larger PM} \iff & \text{better damping} \\ & (\text{open-loop quantity}) & (\text{closed-loop characteristic}) \end{array}$

Thus, the overshoot $M_p = \exp\left(-\frac{\pi\zeta}{\sqrt{1-\zeta^2}}\right)$ and resonant peak $M_r = \frac{1}{2\zeta\sqrt{1-\zeta^2}} - 1$ are both related to PM through $\zeta!!$

Bode's Gain-Phase Relationship



Assuming that G(s) is *minimum-phase* (i.e., has no RHP zeros), we derived the following for the Bode plot of KG(s):

	low freq.	real zero/pole	complex zero/pole
mag. slope	n	up/down by 1	up/down by 2
phase	$n \times 90^{\circ}$	up/down by 90°	up/down by 180°

We can state this succinctly as follows:

Gain-Phase Relationship. Far enough from break-points,

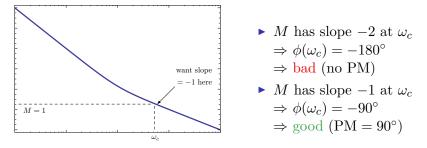
Phase \approx Magnitude Slope $\times 90^{\circ}$

Bode's Gain-Phase Relationship

Gain-Phase Relationship. Far enough from break-points,

Phase \approx Magnitude Slope $\times 90^{\circ}$

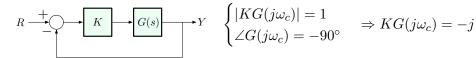
This suggests the following rule of thumb:



— this is an important design guideline!!

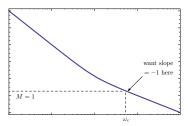
(Similar considerations apply when M-plot has positive slope – depends on the t.f.)

Gain-Phase Relationship & Bandwidth



M-plot for open-loop t.f. KG:

Closed-loop t.f.:



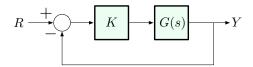
Note: $|KG(j\omega)| \to \infty$ as $\omega \to 0$

$$T(j\omega_c) = \frac{KG(j\omega_c)}{1 + KG(j\omega_c)} = \frac{-j}{1-j}$$
$$|T(j\omega_c)| = \left|\frac{-j}{1-j}\right| = \frac{1}{\sqrt{2}}$$
$$|T(0)| = \lim_{\omega \to 0} \frac{|KG(j\omega)|}{|1 + KG(j\omega)|} = 1$$
$$\implies \omega_c = \omega_{\rm BW} \text{ (bandwidth)}$$

• If $PM = 90^{\circ}$, then $\omega_c = \omega_{BW}$

• If $PM < 90^{\circ}$, then $\omega_c \leq \omega_{BW} \leq 2\omega_c$ (see FPE)

Control Design Using Frequency Response



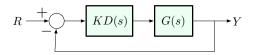
Bode's Gain-Phase Relationship suggests that we can shape the time response of the *closed-loop* system by choosing K (or, more generally, a dynamic controller KD(s)) to tune the Phase Margin.

In particular, from the quantitative Gain-Phase Relationship,

Magnitude slope(ω_c) = -1 \implies Phase(ω_c) $\approx -90^{\circ}$

— which gives us PM of 90° and consequently good damping.

Example



Let
$$G(s) = \frac{1}{s^2}$$
 (double integrator)

Objective: design a controller KD(s) (K = scalar gain) to give

- stability
- ▶ good damping (will make this more precise in a bit)
- $\omega_{\rm BW} \approx 0.5$ (always a closed-loop characteristic)

Strategy:

▶ from Bode's Gain-Phase Relationship, we want magnitude slope = -1 at $\omega_c \implies PM = 90^\circ \implies \text{good damping};$

• if
$$PM = 90^{\circ}$$
, then $\omega_c = \omega_{BW} \Longrightarrow$ want $\omega_c \approx 0.5$

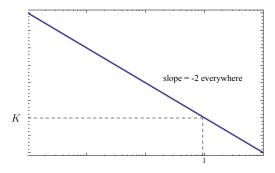
Design, First Attempt

$$R \xrightarrow{+} (KD(s)) \xrightarrow{} (G(s)) \xrightarrow{} Y$$

$$G(s) = \frac{1}{s^2}$$

Let's try proportional feedback:

$$D(s) = 1 \implies KD(s)G(s) = KG(s) = \frac{K}{s^2}$$



This is not a good idea: slope = -2 everywhere, so no PM.

We already know that P-gain alone won't do the job:

 $K + s^2 = 0$ (imag. poles)

Design, Second Attempt

$$R \xrightarrow{+} KD(s) \xrightarrow{} G(s) \xrightarrow{} Y$$

$$G(s) = \frac{1}{s^2}$$

Let's try proportional-derivative feedback:

$$KD(s) = K(\tau s + 1),$$
 where $K = K_{\rm P}, \ K\tau = K_{\rm D}$

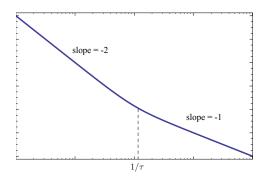
Open-loop transfer function:
$$KD(s)G(s) = \frac{K(\tau s + 1)}{s^2}$$
.

Bode plot interpretation: PD controller introduces a Type 2 term in the numerator, which pushes the slope up by 1

— this has the effect of pushing the M-slope of KD(s)G(s)from -2 to -1 past the break-point ($\omega = 1/\tau$). Design, Second Attempt (PD-Control)

$$R \xrightarrow{+} KD(s) \xrightarrow{} G(s) \xrightarrow{} Y$$

Open-loop transfer function: $KD(s)G(s) = \frac{K(\tau s + 1)}{s^2}$



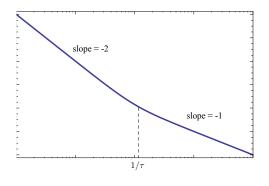
For the G-P relationship to be valid, choose the break-point several times smaller than desired ω_c : \implies let's take $\tau = 10$ $\implies \frac{1}{\tau} = 0.1 = \frac{\omega_c}{5}$ Open-loop t.f.:

$$KD(s)G(s) = \frac{K(10s+1)}{s^2}$$

Design, Second Attempt (PD-Control)

$$R \xrightarrow{+} KD(s) \xrightarrow{} G(s) \xrightarrow{} Y$$

Open-loop transfer function: $KD(s)G(s) = \frac{K(10s+1)}{s^2}$



• Want $\omega_c \approx 0.5$

This means that

$$\begin{split} M(j0.5) &= 1\\ |KD(j0.5)G(j.05)| \\ &= \frac{K|5j+1|}{0.5^2} \\ &= 4K\sqrt{26} \approx 20K \\ \Longrightarrow K &= \frac{1}{20} \end{split}$$

PD Control Design: Evaluation

$$R \xrightarrow{+} KD(s) \xrightarrow{} G(s) \xrightarrow{} Y$$

Initial design: $KD(s) = \frac{10s+1}{20}$

What have we accomplished?

- PM $\approx 90^{\circ}$ at $\omega_c = 0.5$
- ▶ still need to check in Matlab and iterate if necessary

Trade-offs:

- want ω_{BW} to be large enough for fast response (larger $\omega_{BW} \longrightarrow$ larger $\omega_n \longrightarrow$ smaller t_r), but not too large to avoid noise amplification at high frequencies
- ▶ PD control increases slope \longrightarrow increases $\omega_c \longrightarrow$ increases $\omega_{BW} \longrightarrow$ faster response
- usual complaint: D-gain is not physically realizable, so let's try lead compensation

Lead Compensation: Bode Plot

$$KD(s) = K\frac{s+z}{s+p}, \qquad p \gg z$$

In Bode form:

$$KD(s) = \frac{Kz\left(\frac{s}{z}+1\right)}{p\left(\frac{s}{p}+1\right)}$$

or, absorbing z/p into the overall gain, we have

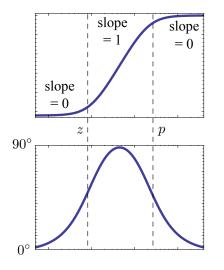
$$KD(s) = \frac{K\left(\frac{s}{z}+1\right)}{\left(\frac{s}{p}+1\right)}$$

Break-points:

- ▶ Type 1 zero with break-point at $\omega = z$ (comes first, $z \ll p$)
- ▶ Type 1 pole with break-point at $\omega = p$

Lead Compensation: Bode Plot

$$KD(s) = \frac{K\left(\frac{s}{z}+1\right)}{\left(\frac{s}{p}+1\right)}$$

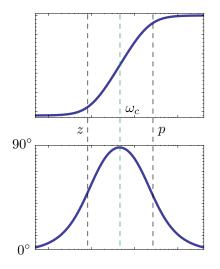


► magnitude levels off at high frequencies ⇒ better noise suppression

 adds phase, hence the term "phase lead"

Lead Compensation and Phase Margin

$$KD(s) = \frac{K\left(\frac{s}{z}+1\right)}{\left(\frac{s}{p}+1\right)}$$



For best effect on PM, ω_c should be halfway between zand p (on log scale):

$$\log \omega_c = \frac{\log z + \log p}{2}$$

or $\omega_c = \sqrt{z \cdot p}$

— geometric mean of z and p

Trade-offs: large p - z means

- ▶ large PM (closer to 90°)
- ▶ but also bigger M at higher frequencies (worse noise suppression)

Back to Our Example: $G(s) = \frac{1}{s^2}$

Objectives (same as before):

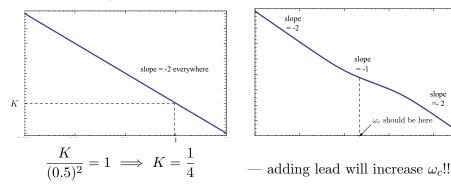
- ▶ stability
- good damping
- $\triangleright \omega_{\rm BW}$ close to 0.5

 $KG(s) = \frac{K}{s^2}$ (w/o lead):

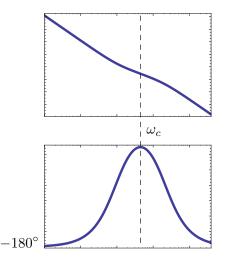
after adding lead:

slope

=- 2



Back to Our Example: $G(s) = \frac{1}{s^2}$



After adding lead with K = 1/4, what do we see?

• adding lead increases ω_c

$$\blacktriangleright \implies PM < 90^{\circ}$$

 $\blacktriangleright \implies \omega_{\rm BW} \text{ may be } > \omega_c$ To be on the safe side, we choose a *new value* of K so that

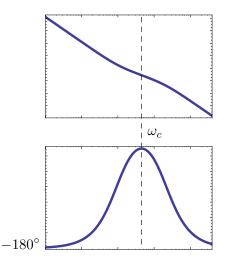
$$\omega_c = \frac{\omega_{\rm BW}}{2}$$

(b/c generally $\omega_c \leq \omega_{\rm BW} \leq 2\omega_c$)

Thus, we want

$$\omega_c = 0.25 \implies K = \frac{1}{16}$$

Back to Our Example: $G(s) = \frac{1}{s^2}$



Next, we pick z and p so that ω_c is approximately their geometric mean:

e.g.,
$$z = 0.1, p = 2$$

 $\sqrt{z \cdot p} = \sqrt{0.2} \approx 0.447$

Resulting lead controller:

$$KD(s) = \frac{1}{16} \frac{\frac{s}{0.1} + 1}{\frac{s}{2} + 1}$$

(may still need to be refined using Matlab)

Lead Controller Design Using Frequency Response General Procedure

- 1. Choose K to get desired bandwidth spec w/o lead
- 2. Choose lead zero and pole to get desired PM
 - ▶ in general, we should first check PM with the K from 1, w/o lead, to see how much more PM we need
- 3. Check design and iterate until specs are met.

This is an intuitive procedure, but it's not very precise, requires trial & error.