Plan of the Lecture

- Review: Bode plots for three types of transfer functions
- Today's topic: stability from frequency response; gain and phase margins

Goal: learn to read off stability properties of the closed-loop system from the Bode plot of the open-loop transfer function; define and calculate Gain and Phase Margins, important quantitative measures of "distance to instability."

Reading: FPE, Section 6.1

Stability from Frequency Response

Consider this unity feedback configuration:

Question: How can we decide whether the closed-loop system is stable for a given value of $K>0$ based on our knowledge of the open-loop transfer function $K G(s)$?

Stability from Frequency Response

Question: How can we decide whether the closed-loop system is stable for a given value of $K>0$ based on our knowledge of the open-loop transfer function $K G(s)$?

One answer: use root locus.
Points on the root locus satisfy the characteristic equation

$$
1+K G(s)=0 \quad \Longleftrightarrow \quad K G(s)=-1 \quad\left(\Longleftrightarrow G(s)=-\frac{1}{K}\right)
$$

If $s \in \mathbb{C}$ is on the RL , then

$$
|K G(s)|=1 \quad \text { and } \quad \angle K G(s)=\angle G(s)=180^{\circ} \bmod 360^{\circ}
$$

Stability from Frequency Response

Question: How can we decide whether the closed-loop system is stable for a given value of $K>0$ based on our knowledge of the open-loop transfer function $K G(s)$?

Another answer: let's look at the Bode plots:

$$
\begin{array}{ll}
\omega \longmapsto|K G(j \omega)| & \text { on log-log scale } \\
\omega \longmapsto \angle K G(j \omega) & \text { on log-linear scale }
\end{array}
$$

- Bode plots show us magnitude and phase, but only for $s=j \omega, 0<\omega<\infty$

How does this relate to the root locus?
$j \omega$-crossings!!

Stability from Frequency Response

Stability from frequency response. If $s=j \omega$ is on the root locus (for some value of K), then

$$
|K G(j \omega)|=1 \quad \text { and } \quad \angle K G(j \omega)=180^{\circ} \bmod 360^{\circ}
$$

Therefore, the transition from stability to instability can be detected in two different ways:

- from root locus - as $j \omega$-crossings
- from Bode plots - as $M=1$ and $\phi=180^{\circ}$ at some frequency ω (for a given value of K)

Example

$$
K G(s)=\frac{K}{s\left(s^{2}+2 s+2\right)}
$$

Characteristic equation:

$$
\begin{aligned}
& 1+\frac{K}{s\left(s^{2}+2 s+2\right)}=0 \\
& s\left(s^{2}+2 s+2\right)+K=0 \\
& s^{3}+2 s^{2}+2 s+K=0
\end{aligned}
$$

Recall the necessary \& sufficient condition for stability for a 3 rd-degree polynomial $s^{3}+a_{1} s^{2}+a_{2} s+a_{3}$:

$$
a_{1}, a_{2}, a_{3}>0, \quad a_{1} a_{2}>a_{3}
$$

Here, the closed-loop system is stable if and only if $0<K<4$. Let's see what we can read off from the Bode plots.

Example, continued

$$
\begin{gathered}
K G(s)=\frac{K}{s\left(s^{2}+2 s+2\right)} \\
\text { Bode form: } K G(j \omega)=\frac{K}{2 j \omega\left(\left(\frac{j \omega}{\sqrt{2}}\right)^{2}+j \omega+1\right)}
\end{gathered}
$$

Plot the magnitude first:

- Type 1 (low-frequency) asymptote: $\frac{K / 2}{j \omega}$ $K_{0}=K / 2, \quad n=-1 \Longrightarrow$ slope $=-1$, passes through $(\omega=1, M=K / 2)$
- Type 3 (complex pole) asymptote: break-point at $\omega=\sqrt{2} \Longrightarrow$ slope down by 2
- $\zeta=\frac{1}{\sqrt{2}} \Longrightarrow$ no reasonant peak

Example, Magnitude Plot

$$
K G(j \omega)=\frac{K}{2 j \omega\left(\left(\frac{j \omega}{\sqrt{2}}\right)^{2}+j \omega+1\right)}
$$

Magnitude plot for $K=4$ (the critical value):

When $\omega=\sqrt{2}, M=|4 G(j \omega)|=\left|\frac{2}{j \sqrt{2}\left(j^{2}+j \sqrt{2}+1\right)}\right|=1$

Example, Phase Plot

$$
K G(j \omega)=\frac{K}{2 j \omega\left(\left(\frac{j \omega}{\sqrt{2}}\right)^{2}+j \omega+1\right)}
$$

Phase plot (independent of K):

When $\omega=\sqrt{2}, \phi=-180^{\circ}$

For the critical value $K=4$:
$M=1$ and $\phi=180^{\circ}$ $\bmod 360^{\circ}$ at $\omega=\sqrt{2}$

Crossover Frequency and Stability

Definition: The frequency at which $M=1$ is called the crossover frequency and denoted by ω_{c}.

Transition from stability to instability on the Bode plot: for critical $K, \quad \angle G\left(j \omega_{c}\right)=180^{\circ}$

Effect of Varying K

What happens as we vary K ?

- ϕ independent of $K \Longrightarrow$ only the M-plot changes
- If we multiply K by 2 :

$$
\log (2 M)=\log 2+\log M
$$

- M-plot shifts up by $\log 2$
- If we divide K by 2 :

$$
\begin{aligned}
\log \left(\frac{1}{2} M\right) & =\log \frac{1}{2}+\log M \\
& =-\log 2+\log M
\end{aligned}
$$

- M-plot shifts down by $\log 2$

Changing the value of K moves the crossover frequency ω_{c} !!

Effect of Varying K

Changing the value of K moves the crossover frequency ω_{c} !!

What happens as we vary K ?

$$
\angle K G\left(j \omega_{c}\right) \begin{cases}>-180^{\circ}, & \text { for } K<4 \\ =-180^{\circ}, & \text { (stable) } K=4 \\ & (\text { critical) } \\ <-180^{\circ}, & \text { for } K>4 \\ & (\text { unstable })\end{cases}
$$

Effect of Varying K

Changing the value of K moves the crossover frequency ω_{c} !!

Equivalently, we may define $\omega_{180^{\circ}}$ as the frequency at which

$$
\phi=180^{\circ} \bmod 360^{\circ} .
$$

Then, in this example*,
$\left|K G\left(j \omega_{180^{\circ}}\right)\right|<1 \longleftrightarrow$ stability $\left|K G\left(j \omega_{180^{\circ}}\right)\right|>1 \longleftrightarrow$ instability

* Not a general rule; conditions will vary depending on the system, must use either root locus or Nyquist plot to resolve ambiguity.

Stability from Frequency Response

Consider this unity feedback configuration:

Suppose that the closed-loop system, with transfer function

$$
\frac{K G(s)}{1+K G(s)}
$$

is stable for a given value of K.
Question: Can we use the Bode plot to determine how far from instability we are?

Two important characteristics: gain margin (GM) and phase margin (PM).

Gain Margin

Back to our example: $\quad G(s)=\frac{1}{s\left(s^{2}+2 s+2\right)}, K=2$ (stable)

Gain margin (GM) is the factor by which K can be multiplied before we get $M=1$ when $\phi=180^{\circ}$

Since varying K doesn't change $\omega_{180^{\circ}}$, to find GM we need to inspect M at $\omega=\omega_{180^{\circ}}$

Gain Margin

Our example: $\quad G(s)=\frac{1}{s\left(s^{2}+2 s+2\right)}, K=2$ (stable)

Gain margin (GM) is the factor by which K can be multiplied before we get $M=1$ when $\phi=180^{\circ}$

Since varying K doesn't change $\omega_{180^{\circ}}$, to find GM we need to inspect M at $\omega=\omega_{180^{\circ}}$

In this example:

$$
\begin{aligned}
\text { at } \omega_{180^{\circ}} & =\sqrt{2} \\
M & =0.5(-6 \mathrm{~dB}), \\
\text { so GM } & =2
\end{aligned}
$$

Phase Margin

Our example: $\quad G(s)=\frac{1}{s\left(s^{2}+2 s+2\right)}, K=2$ (stable)

Phase margin (PM) is the amount by which the phase at the crossover frequency ω_{c} differs from $180^{\circ} \bmod 360^{\circ}$

To find PM, we need to inspect ϕ at $\omega=\omega_{c}$

In this example:

$$
\text { at } \begin{aligned}
\omega_{c} & \approx 0.92 \\
\phi & =-148^{\circ},
\end{aligned}
$$

so $\mathrm{PM}=\left(-148^{\circ}\right)-\left(-180^{\circ}\right)=32^{\circ}$
(in practice, want $\mathrm{PM} \geq 30^{\circ}$)

Example 2

$$
\begin{array}{rl}
R \xrightarrow{+} \longrightarrow G & G(s) \\
G(s)=\frac{\omega_{n}^{2}}{s^{2}+2 \zeta \omega_{n} s} & \zeta, \omega_{n}>0
\end{array}
$$

Consider gain $K=1$, which gives closed-loop transfer function

$$
\begin{aligned}
\frac{K G(s)}{1+K G(s)} & =\frac{\frac{\omega_{n}^{2}}{s^{2}+2 \zeta \omega_{n} s}}{1+\frac{\omega_{n}^{2}}{s^{2}+2 \zeta \omega_{n} s}} \\
& =\frac{\omega_{n}^{2}}{s^{2}+2 \zeta \omega_{n} s+\omega_{n}^{2}}
\end{aligned}
$$

Question: what is the gain margin at $K=1$?
Answer: $\mathrm{GM}=\infty$

Example 2

$$
G(j \omega)=\frac{\omega_{n}^{2}}{(j \omega)^{2}+2 \zeta \omega_{n} j \omega}=\frac{\omega_{n}}{2 \zeta j \omega\left(\frac{j \omega}{2 \zeta \omega_{n}}+1\right)}
$$

Let's look at the phase plot:

- starts at -90° (Type 1 term with $n=-1$)
- goes down by -90° (Type 2 pole)

Recall: to find GM, we first need to find $\omega_{180^{\circ}}$, and here there is no such $\omega \Longrightarrow$ no GM.

Example 2

So, at $K=1$, the gain margin of

$$
G(s)=\frac{\omega_{n}^{2}}{s^{2}+2 \zeta \omega_{n} s}=\frac{\omega_{n}^{2}}{s\left(s+2 \zeta \omega_{n}\right)}
$$

is equal to ∞ - what does that mean?
It means that we can keep on increasing K indefinitely without ever encountering instability.

But we already knew that: the characteristic polynomial is

$$
p(s)=s^{2}+2 \zeta \omega_{n} s+\omega_{n}^{2}
$$

which is always stable.
What about phase margin?

Example 2: Phase Margin

$$
G(j \omega)=\frac{\omega_{n}^{2}}{(j \omega)^{2}+2 \zeta \omega_{n} j \omega}=\frac{\omega_{n}}{2 \zeta j \omega\left(\frac{j \omega}{2 \zeta \omega_{n}}+1\right)}
$$

Let's look at the magnitude plot:

- low-frequency asymptote slope -1 (Type 1 term, $n=-1$)
- slope down by 1 past the breakpt. $\omega=2 \zeta \omega_{n}$ (Type 2 pole)
\Longrightarrow there is a finite crossover frequency $\omega_{c}!!$

Example 2: Magnitude Plot

$$
G(j \omega)=\frac{\omega_{n}^{2}}{(j \omega)^{2}+2 \zeta \omega_{n} j \omega}=\frac{\omega_{n}}{2 \zeta j \omega\left(\frac{j \omega}{2 \zeta \omega_{n}}+1\right)}
$$

It can be shown that, for this system,

$$
\left.\mathrm{PM}\right|_{K=1}=\tan ^{-1}\left(\frac{2 \zeta}{\sqrt{4 \zeta^{4}+1}-2 \zeta^{2}}\right)
$$

- for $\mathrm{PM}<70^{\circ}$, a good approximation is $\mathrm{PM} \approx 100 \cdot \zeta$

Phase Margin for 2nd-Order System

$$
\begin{aligned}
& G(j \omega)=\frac{\omega_{n}^{2}}{(j \omega)^{2}+2 \zeta \omega_{n} j \omega}=\frac{\omega_{n}}{2 \zeta j \omega\left(\frac{j \omega}{2 \zeta \omega_{n}}+1\right)} \\
& \left.\mathrm{PM}\right|_{K=1}=\tan ^{-1}\left(\frac{2 \zeta}{\sqrt{4 \zeta^{4}+1}-2 \zeta^{2}}\right) \approx 100 \cdot \zeta
\end{aligned}
$$

Conclusions:

$$
\begin{aligned}
& \text { larger } \mathrm{PM} \Longleftrightarrow \\
& \text { (open-loop quantity) }
\end{aligned}
$$

Thus, the overshoot $M_{p}=\exp \left(-\frac{\pi \zeta}{\sqrt{1-\zeta^{2}}}\right)$ and resonant peak $M_{r}=\frac{1}{2 \zeta \sqrt{1-\zeta^{2}}}-1$ are both related to PM through $\zeta!!$

Preview: Bode's Gain-Phase Relationship

In the next lecture, we will see the following more generally:

Hendrik Wade Bode
Bode's Gain-Phase Relationship: all important characteristics of the closed-loop time response can be related to the phase margin of the open-loop transfer function!! (1905-1982)

In fact, we will use a quantitative statement of this relationship as a design guideline.

