
Plan of the Lecture

I Review: Bode plots for three types of transfer functions

I Today’s topic: stability from frequency response; gain and
phase margins

Goal: learn to read off stability properties of the closed-loop
system from the Bode plot of the open-loop transfer function;
define and calculate Gain and Phase Margins, important
quantitative measures of “distance to instability.”

Reading: FPE, Section 6.1



Stability from Frequency Response

Consider this unity feedback configuration:

G(s) Y
+
�R K

Question: How can we decide whether the closed-loop system
is stable for a given value of K > 0 based on our knowledge of
the open-loop transfer function KG(s)?



Stability from Frequency Response

G(s) Y
+
�R K

Question: How can we decide whether the closed-loop system
is stable for a given value of K > 0 based on our knowledge of
the open-loop transfer function KG(s)?

One answer: use root locus.

Points on the root locus satisfy the characteristic equation

1 +KG(s) = 0 ⇐⇒ KG(s) = −1
(
⇐⇒ G(s) = − 1

K

)
If s ∈ C is on the RL, then

|KG(s)| = 1 and ∠KG(s) = ∠G(s) = 180◦ mod 360◦



Stability from Frequency Response

G(s) Y
+
�R K

Question: How can we decide whether the closed-loop system
is stable for a given value of K > 0 based on our knowledge of
the open-loop transfer function KG(s)?

Another answer: let’s look at the Bode plots:

ω 7−→ |KG(jω)| on log-log scale

ω 7−→ ∠KG(jω) on log-linear scale

— Bode plots show us magnitude and phase, but only for
s = jω, 0 < ω <∞

How does this relate to the root locus? jω-crossings!!



Stability from Frequency Response

G(s) Y
+
�R K

Stability from frequency response. If s = jω is on the root
locus (for some value of K), then

|KG(jω)| = 1 and ∠KG(jω) = 180◦ mod 360◦

Therefore, the transition from stability to instability can be
detected in two different ways:

I from root locus — as jω-crossings

I from Bode plots — as M = 1 and φ = 180◦ at some
frequency ω (for a given value of K)



Example

KG(s) =
K

s(s2 + 2s+ 2)

Characteristic equation:

1 +
K

s(s2 + 2s+ 2)
= 0

s(s2 + 2s+ 2) +K = 0

s3 + 2s2 + 2s+K = 0

Recall the necessary & sufficient condition for stability for a
3rd-degree polynomial s3 + a1s

2 + a2s+ a3:

a1, a2, a3 > 0, a1a2 > a3.

Here, the closed-loop system is stable if and only if 0 < K < 4.

Let’s see what we can read off from the Bode plots.



Example, continued

KG(s) =
K

s(s2 + 2s+ 2)

Bode form: KG(jω) =
K

2jω
(( jω√

2

)2
+ jω + 1

)
Plot the magnitude first:

I Type 1 (low-frequency) asymptote:
K/2

jω
K0 = K/2, n = −1 =⇒ slope = −1, passes through
(ω = 1,M = K/2)

I Type 3 (complex pole) asymptote:
break-point at ω =

√
2 =⇒ slope down by 2

I ζ =
1√
2

=⇒ no reasonant peak



Example, Magnitude Plot

KG(jω) =
K

2jω
(( jω√

2

)2
+ jω + 1

)
Magnitude plot for K = 4 (the critical value):
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Example, Phase Plot

KG(jω) =
K

2jω
(( jω√

2

)2
+ jω + 1

)
Phase plot (independent of K):
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When ω =
√

2, φ = −180◦
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For the critical value
K = 4:

M = 1 and φ = 180◦

mod 360◦ at ω =
√

2



Crossover Frequency and Stability

Definition: The frequency at which M = 1 is called the
crossover frequency and denoted by ωc.
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Transition from stability to instability on the Bode plot:

for critical K, ∠G(jωc) = 180◦



Effect of Varying K
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What happens as we vary K?

I φ independent of K =⇒
only the M -plot changes

I If we multiply K by 2:

log(2M) = log 2 + logM

– M -plot shifts up by log 2

I If we divide K by 2:

log(
1

2
M) = log

1

2
+ logM

= − log 2 + logM

– M -plot shifts down by
log 2

Changing the value of K moves the crossover frequency ωc!!



Effect of Varying K

Changing the value of K moves the crossover frequency ωc!!
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What happens as we vary K?

∠KG(jωc)



> −180◦, for K < 4

(stable)

= −180◦, for K = 4

(critical)

< −180◦, for K > 4

(unstable)



Effect of Varying K

Changing the value of K moves the crossover frequency ωc!!
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Equivalently, we may define
ω180◦ as the frequency at which

φ = 180◦ mod 360◦.

Then, in this example∗,

|KG(jω180◦)| < 1 ←→ stability

|KG(jω180◦)| > 1 ←→ instability

∗ Not a general rule; conditions will

vary depending on the system, must
use either root locus or Nyquist plot
to resolve ambiguity.



Stability from Frequency Response

Consider this unity feedback configuration:

G(s) Y
+
�R K

Suppose that the closed-loop system, with transfer function

KG(s)

1 +KG(s)
,

is stable for a given value of K.

Question: Can we use the Bode plot to determine how far
from instability we are?

Two important characteristics: gain margin (GM) and phase
margin (PM).



Gain Margin

Back to our example: G(s) =
1

s(s2 + 2s+ 2)
, K = 2 (stable)
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Gain margin (GM) is the
factor by which K can be
multiplied before we get
M = 1 when φ = 180◦

Since varying K doesn’t change
ω180◦ , to find GM we need to
inspect M at ω = ω180◦



Gain Margin

Our example: G(s) =
1

s(s2 + 2s+ 2)
, K = 2 (stable)
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M = 0.5(�6 dB)

Gain margin (GM) is the
factor by which K can be
multiplied before we get
M = 1 when φ = 180◦

Since varying K doesn’t change
ω180◦ , to find GM we need to
inspect M at ω = ω180◦

In this example:

at ω180◦ =
√

2

M = 0.5 (−6 dB),

so GM = 2



Phase Margin

Our example: G(s) =
1

s(s2 + 2s+ 2)
, K = 2 (stable)
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Phase margin (PM) is the
amount by which the phase at
the crossover frequency ωc
differs from 180◦ mod 360◦

To find PM, we need to inspect
φ at ω = ωc

In this example:

at ωc ≈ 0.92

φ = −148◦,

so PM = (−148◦)− (−180◦) = 32◦

(in practice, want PM ≥ 30◦)



Example 2

G(s) Y
+
�R K

G(s) =
ω2
n

s2 + 2ζωns
ζ, ωn > 0

Consider gain K = 1, which gives closed-loop transfer function

KG(s)

1 +KG(s)
=

ω2
n

s2 + 2ζωns

1 +
ω2
n

s2 + 2ζωns

=
ω2
n

s2 + 2ζωns+ ω2
n

— prototype 2nd-order response

Question: what is the gain margin at K = 1?

Answer: GM =∞



Example 2

G(jω) =
ω2
n

(jω)2 + 2ζωnjω
=

ωn

2ζjω
(

jω
2ζωn

+ 1
)

Let’s look at the phase plot:

I starts at −90◦ (Type 1 term with n = −1)

I goes down by −90◦ (Type 2 pole)
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Recall: to find GM, we first need to find ω180◦ , and here there is
no such ω =⇒ no GM.



Example 2

So, at K = 1, the gain margin of

G(s) =
ω2
n

s2 + 2ζωns
=

ω2
n

s(s+ 2ζωn)

is equal to ∞ — what does that mean?

It means that we can keep on increasing K indefinitely without
ever encountering instability.

But we already knew that: the characteristic polynomial is

p(s) = s2 + 2ζωns+ ω2
n,

which is always stable.

What about phase margin?



Example 2: Phase Margin

G(jω) =
ω2
n

(jω)2 + 2ζωnjω
=

ωn

2ζjω
(

jω
2ζωn

+ 1
)

Let’s look at the magnitude plot:

I low-frequency asymptote slope −1 (Type 1 term, n = −1)

I slope down by 1 past the breakpt. ω = 2ζωn (Type 2 pole)

=⇒ there is a finite crossover frequency ωc!!
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Example 2: Magnitude Plot

G(jω) =
ω2
n

(jω)2 + 2ζωnjω
=

ωn

2ζjω
(

jω
2ζωn

+ 1
)
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It can be shown that, for this system,

PM
∣∣∣
K=1

= tan−1

(
2ζ√

4ζ4 + 1− 2ζ2

)

— for PM < 70◦, a good approximation is PM ≈ 100 · ζ



Phase Margin for 2nd-Order System

G(jω) =
ω2
n

(jω)2 + 2ζωnjω
=

ωn

2ζjω
(

jω
2ζωn

+ 1
)

PM
∣∣∣
K=1

= tan−1

(
2ζ√

4ζ4 + 1− 2ζ2

)
≈ 100 · ζ

Conclusions:

larger PM ⇐⇒ better damping

(open-loop quantity) (closed-loop characteristic)

Thus, the overshoot Mp = exp

(
− πζ√

1−ζ2

)
and resonant peak

Mr = 1

2ζ
√

1−ζ2
− 1 are both related to PM through ζ!!



Preview: Bode’s Gain-Phase Relationship

In the next lecture, we will see the following more generally:

Hendrik Wade Bode

(1905–1982)

Bode’s Gain-Phase Relationship: all important
characteristics of the closed-loop time response
can be related to the phase margin of the
open-loop transfer function!!

In fact, we will use a quantitative statement of this relationship
as a design guideline.


