
Plan of the Lecture

I Review: rules for sketching root loci; introduction to
dynamic compensation

I Today’s topic: lead and lag dynamic compensation

Goal: introduce the use of lead and lag dynamic compensators
for approximate implementation of PD and PI control.

Reading: FPE, Chapter 5



From Last Time: Double Integrator with PD-Control

Characteristic equation: 1 +K · s+ 1
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= 0
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What can we conclude from this root locus about stabilization?

I all closed-loop poles are in LHP (we already knew this
from Routh, but now can visualize)

I nice damping, so can meet reasonable specs

So, the effect of D-gain was to introduce an open-loop zero into
LHP, and this zero “pulled” the root locus into LHP, thus
stabilizing the system.



Dynamic Compensation

Objectives: stabilize the system and satisfy given time response
specs using a stable, causal controller.
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Characteristic equation:

1 +K · s+ z

s+ p
· 1

s2
= 1 +KL(s) = 0



Approximate PD Using Dynamic Compensation

Reminder: we can approximate the D-controller KDs by

KD
ps

s+ p
−→ KDs as p→∞

— here, −p is the pole of the controller.

So, we replace the PD controller KP +KDs by

K(s) = KP +KD
ps
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G(s) = 0



Lead & Lag Compensators
Consider a general controller of the form

K
s+ z

s+ p
— K, z, p > 0 are design parameters

Depending on the relative values of z and p, we call it:

I a lead compensator when z < p

I a lag compensator when z > p

Why the name “lead/lag?” — think frequency response

∠
jω + z

jω + p
= ∠(jω + z)− ∠(jω + p) = ψ − φ

I if z < p, then ψ − φ > 0
(phase lead)

I if z > p, then ψ − φ < 0
(phase lag) z p

!
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Back to Double Integrator
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Controller transfer function is K
s+ z

s+ p
, where:

K = KP + pKD, z =
pKP

KP + pKD

p→∞−−−→ KP

KD

so, as p→∞, z tends to a constant, so we get a lead controller.

We use lead controllers as dynamic compensators for
approximate PD control.



Double Integrator & Lead Compensator
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To keep things simple, let’s set KP = KD. Then:

K = KP + pKD = (1 + p)KD

z =
pKP

KP + pKD
=

pKD

(1 + p)KD
=

p

1 + p

p→∞−−−→ 1

Since we can choose p and z directly, let’s take

z = 1 and p large.

We expect to get behavior similar to PD control.



Double Integrator & Lead Compensator
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L(s) =
s+ z

s+ p
· 1

s2
z=1
=

s+ 1

s2(s+ p)

Let’s try a few values of p. Here’s p = 10:
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Close to jω-axis, this root locus looks similar to the PD root
locus. However, the pole at s = −10 makes the locus look
different for s far into LHP.



Double Integrator & Lead Compensator

L(s) =
s+ 1

s2(s+ p)

Root locus for p = 10:
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The design seems to look good: nice damping, can meet
reasonable specs.

Any concerns with large values of p?

When p is large, we are very close to PD control, so we run into
the same issue: noise amplification.
(This is just intuition for now — we will confirm it later using
frequency-domain methods.)



Double Integrator & Lead Compensator

L(s) =
s+ 1

s2(s+ p)

Let’s try p = 5:
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— for this value of p, the root locus is different, not nearly as
nicely damped as for p = 10.



Double Integrator & Lead Compensator

L(s) =
s+ 1

s2(s+ p)

Let’s try p in between p = 5 and p = 10, say p = 9:
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— for this value of p, the branches meet (break in) and separate
(break away) at the same point on the real axis.



Summary on Design Trade-offs

From what we have seen so far:

I p large — good damping, but bad noise suppression (too
close to PD); the branches first break in (meet at the real
axis), then break away.

I p small — noise suppression is better, but RL is too close
to jω-axis, which is not good; no break-in for small values
of p.

I intermediate values of p — transition between two types of
RL; break-in and break-away points are the same.
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Lead Controller Design

With a lead controller in place, we have

KL(s) = K
s+ z

s+ p
·Gp(s)

where the lead zero parameter z and lead pole parameter p are
constrained to satisfy z < p.

In our example with Gp(s) = 1/s2, we have set z = 1 to
approximate PD control. Then p > 1 is our design parameter
(and, of course, K is the gain parameter in the root locus).

Alternatively, we can assume that p is given (say, from noise
suppression considerations), and we look for z that will give us
a desired pole on the RL.

Is there a systematic procedure for doing this?



Pole Placement Using RL
Back to our example: double integrator with lead compensation

KL(s) = K
s+ z

s+ p
· 1

s2

Problem: given p and a desired closed-loop pole s, find the
value of z that will guarantee this (if possible).

Solution: use the phase condition
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∑
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Pole Placement Using RL
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Suppose
ϕ1 = ϕ2 = 120◦,
ϕ3 = 30◦.

We want ψ = 180◦ +
∑
i

ϕi

Must have

ψ = 180◦ + 120◦ + 120◦ + 30◦

= 450◦

= 90◦ mod 360◦

Thus, we should
have z = −s
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Control Design Using Root Locus

Case study: plant transfer function Gp(s) =
1

s− 1

Control objective: stability and constant reference tracking

In earlier lectures, we saw that for perfect steady-state tracking
we need PI control
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Characteristic equation: 1 +

(
KP +

KI

s

)
︸ ︷︷ ︸

Gc(s)

(
1

s− 1

)
︸ ︷︷ ︸

Gp(s)

= 0

To use the RL method, we need to convert it into the Evans

form 1 +KL(s) = 0, where L(s) =
b(s)

a(s)
=
sm + b1s

m−1 + . . .

sn + a1sn−1 + . . .

1 +

(
KP +

KI

s

)
1

s− 1
= 1 +

KPs+KI

s

1

s− 1

= 1 +KP
s+KI/KP

s(s− 1)

=⇒ K = KP, L(s) =
s+KI/KP

s(s− 1)
(assume KI/KP fixed, = 1)



Root Locus

L(s) =
s+ 1

s(s− 1)

Rule A: 2 branches

Rule B: branches start at
p1 = 0, p2 = 1 (RHP!!)

Rule C: branches end at z1 = −1,±∞
Rule D: real locus = [0, 1], (−∞,−1]

Rule E: asymptote at 180◦

Rule F: jω-crossings:

a(s) +Kb(s) = 0

s(s− 1) +K(s+ 1) = 0

s2 + (K − 1)s+K = 0

Kcritical = 1 =⇒ ω0 = 1
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Root Locus for PI Compensation
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I The system is stable for K > 1
(from Routh-Hurwitz)

I For very large K, we get a
completely damped system, with
negative real poles

I Perfect steady-state tracking of
constant references:

E

R
=

1

1 +GcGp

=
s(s− 1)

s(s− 1) +K(s+ 1)

DC gain(R→ E) = 0 (for K > 1)

I However: 1/s is not a stable
element.



Approximate PI via Dynamic Compensation

PI control achieves the objective of stabilization and perfect
steady-state tracking of constant references; however, just as
with PD earlier, we want a stable controller.

Here’s an idea:

replace K
s+ 1

s
by K

s+ 1

s+ p
, where p is small

More generally, if z = KI/KP, then

replace K
s+ z

s
by K

s+ z

s+ p
, where p < z

This is lag compensation (or lag control)!

We use lag controllers as dynamic compensators for
approximate PI control.


