
Plan of the Lecture

I Review: introduction to Root Locus

I Today’s topic: design using Root Locus; introduction to
dynamic compensation

Goal: learn how to use Root Locus in control system design
(stabilization, time response shaping) and to visualize the effect
of various controller types on system performance.

Reading: FPE, Chapter 5

Note!! The way I teach the Root Locus differs a bit from what
the textbook does (good news: it is simpler). Still, pay
attention in class!!



Reminder: Root Locus

L(s) YK
+

�R

where L(s) =
b(s)

a(s)
=

sm + b1s
m−1 + . . . + bm−1s + bm

sn + a1sn−1 + . . . + an−1s + an
, m ≤ n

Root locus: the set of all s ∈ C that solve the characteristic
equation

a(s) + Kb(s) = 0

as K varies from 0 to ∞.

Or equivalently:

The phase condition: The root locus of 1 + KL(s) is the set
of all s ∈ C, such that ∠L(s) = 180◦, i.e., L(s) is real and
negative.



Reminder: Rules for Sketching Root Loci

There are six rules for sketching root loci. These rules are
mainly qualitative, and their purpose is to give intuition about
impact of poles and zeros on performance.

These rules are:

I Rule A — number of branches (= number of open loop
poles)

I Rule B — start points (= open loop poles)

I Rule C — end points (= open loop zeros)

I Rule D — real locus (located relative to real open-loop
poles/zeros)

I Rule E — asymptotes

I Rule F — jω-crossings

Last time, we have covered Rules A–C (and a bit of D ...)



Example
Let’s consider L(s) =

s + 1

s(s + 2)
(
s + 1)2 + 1

)

I Rule A:

{
m = 1

n = 4
=⇒ 4 branches

I Rule B: branches start at open-loop poles
s = 0, s = −2, s = −1± j

I Rule C: branches end at open-loop zeros s = −1,±∞
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Example, continued

Three more rules:

I Rule D: real locus

I Rule E: asymptotes

I Rule F: jω-crossings

Rules D and E are both based on the fact that

1 + KL(s) = 0 for some K > 0 ⇐⇒ L(s) < 0

Characteristic equation in our example:

s(s + 2)
(
(s + 1)2 + 1

)
︸ ︷︷ ︸

a(s)

+K (s + 1)︸ ︷︷ ︸
b(s)

= 0

s4 + 4s3 + 6s2 + (4 + K)s + K = 0

— don’t even think about factoring this polynomial!!



Rule D: Real Locus

The branches of the RL start at the open-loop poles. Which
way do they go, left or right?

Recall the phase condition:

1 + KL(s) = 0 ⇐⇒ ∠L(s) = 180◦

∠L(s) = ∠
b(s)

a(s)

= ∠
(s− z1)(s− z2) . . . (s− zm)

(s− p1)(s− p2) . . . (s− pn)

=

m∑

i=1

∠(s− zi)−
n∑

j=1

∠(s− pj)

— this sum must be ±180◦ for any s that lies on the RL.



Rule D: Real Locus

So, we try test points:
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x o x
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p4

z1

s1

∠(s1 − z1) = 0◦ (s1 > z1)

∠(s1 − p1) = 180◦ (s1 < p1)

∠(s1 − p2) = 0◦ (s1 > p2)

∠(s1 − p3) = −∠(s1 − p4)

(conjugate poles cancel)

∠(s1 − z1)− [∠(s1 − p1) + ∠(s1 − p2) + ∠(s1 − p3) + ∠(s1 − p4)]

= 0◦ − [180◦ + 0◦ + 0◦] = −180◦ s1 is on RL



Rule D: Real Locus

Try more test points:
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x o x
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p4

z1

s2

∠(s2 − z1) = 180◦ (s2 < z2)

∠(s2 − p1) = 180◦ (s2 < p1)

∠(s2 − p2) = 0◦ (s2 > p2)

∠(s2 − p3) = −∠(s1 − p4)

(conjugate poles cancel)

∠(s2 − z1)− [∠(s2 − p1) + ∠(s2 − p2) + ∠(s2 − p3) + ∠(s2 − p4)]

= 180◦ − [180◦ + 0◦ + 0◦] = 0◦ ×s1 is not on RL



Rule D: Real Locus

Rule D: If s is real, then it is on the RL of 1 +KL if and
only if there are an odd number of real open-loop poles
and zeros to the right of s.
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Rule E: Asymptotes
How does the locus look as s→∞?

180◦ = ∠L(s) = ∠
sm + b1s

m−1 + . . .

sn + a1sn−1 + . . .

= ∠
sm−n + b1s

m−n−1 + . . .

1 + a1s−1 + . . .

' ∠sm−n if |s| → ∞ (recall m ≤ n)

Claim: If ∠sm−n = 180◦, then

∠s =
180◦ + ` · 360◦

n−m
, ` = 0, 1, . . . , n−m− 1

Proof:

s = |s|ej∠s sm−n = |s|m−nej(m−n)∠s

(m− n)∠s = 180◦ =⇒ (m− n)∠s = 180◦ + ` · 360◦



Rule E: Asymptotes

Rule E: Branches near ∞ have phase

∠s ' 180◦ + ` · 360◦
n−m

=
(2`+ 1) · 180◦

n−m
, ` = 0, 1, . . . , n−m− 1

Note: if m = n, then there are no branches at ∞.



Back to Example: Rule E
Branches near ∞ have phase

∠s =
(2` + 1) · 180◦

n−m
, ` = 0, 1, . . . , n−m− 1

In our example, L(s) =
s + 1

s(s + 2)
(
s + 1)2 + 1

)
{
n = 4

m = 1

∠s =
(2` + 1) · 180◦

3
, ` = 0, 1, 2

` = 0 :
2 · 0 + 1

3
180◦ = 60◦

` = 1 :
2 · 1 + 1

3
180◦ = 180◦

` = 2 :
2 · 2 + 1

3
180◦ =

5

3
180◦ =

(
2− 1

3

)
180◦ = −60◦

— asymptotes have angles 60◦, 180◦, −60◦



Rule F: jω-crossings

Do the branches of the root locus cross the jω axis?
(transition from stability to instability)

Goal: determine if the equation

a(jω) + Kb(jω) = 0

has a solution ω ≥ 0 for some K > 0.

Best approach here: use the Routh test to first determine the
critical value of K (when the characteristic polynomial becomes
unstable), then plug it in and solve for jω-crossings
(numerically or analytically).



Rule F: jω-crossings

In our example, the characteristic polynomial is

s4 + 4s3 + 6s2 + (4 + K)s + K

Form the Routh array:

s4 : 1 6 K
s3 : 4 4 + K 0
s2 : 20−K 4K
s1 : 80−K2 0
s0 : 4K

For stability, need 20−K > 0, 80−K2 > 0, 4K > 0

The characteristic polynomial is stable for K <
√

80 = 4
√

5

=⇒ Kcritical = 4
√

5



Rule F: jω-crossings

In our example, the characteristic polynomial is

s4 + 4s3 + 6s2 + (4 + K)s + K

The critical value: K = 4
√

5 (from Routh test).

To find the jω-crossing, plug in and solve:

(jω)4 + 4(jω)3 + 6(jω)2 + (4 + 4
√

5)jω + 4
√

5 = 0

ω4 − 4jω3 − 6ω2 + (4 + 4
√

5)jω + 4
√

5 = 0

real part: ω4 − 6ω2 + 4
√

5 = 0

imag. part: − 4ω3 + 4(1 +
√

5)ω = 0 ω2 = 1 +
√

5

jω-crossing at jω0 =
√

1 +
√

5 ≈ 1.8, when K = 4
√

5 ≈ 8.9



Complete Root Locus

L(s) =
s + 1

s(s + 2)
(
s + 1)2 + 1

)

Rule A: 4 branches

Rule B: branches start at p1, . . . , p4

Rule C: branches end at z1,±∞
Rule D: real locus = [z1, p1]∪ (−∞, p2]

Rule E: asymptotes form angles at
60◦, 180◦,−60◦

Rule F: jω-crossings at ±jω0, where

ω0 =

√
1 +
√

5 ≈ 1.8

when K = 4
√

5 ≈ 8.9

(transition from stability to
instability)
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when K = 4
p
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Using RL to Select Parameter Values

In Lab 5, you will need to select the value of gain K that
corresponds to a desired pole on the root locus.

Here is one way of doing it:

L(s) = − 1

K
— negative real number

m

K = − 1

L(s)
=

1

|L(s)|

L(s) =
(s− z1) . . . (s− zm)

(s− p1) . . . (s− pn)

=⇒ K =
1

|L(s)| =
|s− p1| . . . |s− pn|
|s− z1| . . . |s− zm|



Control Design Using Root Locus

Case study: double integrator, transfer function G(s) =
1

s2

Control objective: ensure stability; meet time response specs.

First, let’s try a simple P -gain:

YKR
+

�
1

s2

Closed-loop transfer function:

K
s2

1 + K
s2

=
K

s2 + K



Double Integrator with P-Gain

YKR
+

�
1

s2

Closed-loop transfer function:

K
s2

1 + K
s2

=
K

s2 + K

Characteristic equation:

s2 + K = 0

Closed-loop poles: s = ±
√
Kj

Re

Im

0
xx

double
pole

This confirms what we already knew: P-gain alone does not
deliver stability.



Double Integrator with PD-Control

1

s2 YKP + KDsR
+

�
Gc

Gp

Characteristic equation: 1 + (KP + KDs)︸ ︷︷ ︸
Gc(s)

· 1

s2︸︷︷︸
Gp(s)

= 0

s2 + KDs + KP = 0

To use the RL method, we need to convert it into the Evans

form 1 + KL(s) = 0, where L(s) =
b(s)

a(s)
=

sm + b1s
m−1 + . . .

sn + a1sn−1 + . . .

1 + (KP + KDs)
1

s2
= 1 + KD ·

s + KP/KD

s2

=⇒ K = KD, L(s) =
s + KP/KD

s2
(assume KP/KD fixed, = 1)



Double Integrator with PD-Control

Characteristic equation: 1 + K · s + 1

s2
= 0

Here we can still write out the roots explicitly:

s2 + Ks + K = 0 =⇒ s =
−K ±

√
K2 − 4K

2

But let’s actually draw the RL using the rules:

Rule A: 2 branches

Rule B: both start at s = 0

Rule C: one ends at z1 = −1, the
other at ∞
Rule D: one branch will go off to −∞
Rule E: asymptote angles at 180◦

Rule F: no jω-crossings except for
s = p1 = p2 = 0
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Double Integrator with PD-Control

Characteristic equation: 1 + K · s + 1

s2
= 0

-3.5 -3.0 -2.5 -2.0 -1.5 -1.0 -0.5

-1.0

-0.5

0.5

1.0

What can we conclude from this root locus about stabilization?

I all closed-loop poles are in LHP (we already knew this
from Routh, but now can visualize)

I nice damping, so can meet reasonable specs

So, the effect of D-gain was to introduce an open-loop zero into
LHP, and this zero “pulled” the root locus into LHP, thus
stabilizing the system.



Dynamic Compensation

We can use RL to visualize the effect of adding D-gain: add a
LHP zero, pull the closed-loop poles into LHP — stabilization!!

However: we already know that PD control is not physically
realizable (lack of causality).

Dynamic compensation (or dynamic control): consider
controllers more general than just P-gain, but implementable by
causal systems of the form

ż = Az + Be

u = Cz + De

G(s) Y
+
�R

E U

controller plant

K(s)

— so, any proper transfer function is admissible



Approximate PD Using Dynamic Compensation

Reminder: we can approximate the D-controller KDs by

KD
ps

s + p
−→ KDs as p→∞

— here, −p is the pole of the controller.

So, we replace the PD controller KP + KDs by

K(s) = KP + KD
ps

s + p

G(s) Y
+
�R

E U

controller plant

K(s)

Closed-loop poles: 1 +

(
KP + KD

ps

s + p

)
G(s) = 0



Approximate PD Using Dynamic Compensation

G(s) Y
+
�R

E U

controller plant

K(s)

Closed-loop poles: 1 +

(
KP + KD

ps

s + p

)
G(s) = 0

Transform into Evans’ canonical form:

KP + KD
ps

s + p
=

(KP + pKD)s + pKP

s + p

= (KP + pKD) ·
s + pKP

KP+pKD

s + p

Thus, we can write the controller as K · s+z
s+p , where:

I the parameter K = KP + pKD is a combination of P-gain,
D-gain, and p

I the controller has an open-loop zero at −z = −pKP
K



Approximate PD Using Dynamic Compensation

Double integrator:

1

s2 YK
s + z

s + p
R

+

�

Characteristic equation:

1 + K · s + z

s + p
· 1

s2
= 1 + KL(s) = 0

Note: L(s) is not the open-loop transfer function; it comes
from the forward gain shaped by the controller acting on the
plant.



1

s � 1
YKP +

KI

s
R

+

�
Gc Gp

Characteristic equation: 1 + (KP + KDs)︸ ︷︷ ︸
Gc(s)

· 1

s2︸︷︷︸
Gp(s)

= 0

s2 + KDs + KP = 0

To use the RL method, we need to convert it into the Evans

form 1 + KL(s) = 0, where L(s) =
b(s)

a(s)
=

sm + b1s
m−1 + . . .

sn + a1sn−1 + . . .

1 + (KP + KDs)
1

s2
= 1 + KD ·

s + KP/KD

s2

=⇒ K = KD, L(s) =
s + KP/KD

s2
(assume KP/KD fixed, = 1)


