Plan of the Lecture

- Review: introduction to Root Locus
- Today's topic: design using Root Locus; introduction to dynamic compensation

Goal: learn how to use Root Locus in control system design (stabilization, time response shaping) and to visualize the effect of various controller types on system performance.

Reading: FPE, Chapter 5
Note!! The way I teach the Root Locus differs a bit from what the textbook does (good news: it is simpler). Still, pay attention in class!!

Reminder: Root Locus

where $L(s)=\frac{b(s)}{a(s)}=\frac{s^{m}+b_{1} s^{m-1}+\ldots+b_{m-1} s+b_{m}}{s^{n}+a_{1} s^{n-1}+\ldots+a_{n-1} s+a_{n}}, m \leq n$
Root locus: the set of all $s \in \mathbb{C}$ that solve the characteristic equation

$$
a(s)+K b(s)=0
$$

as K varies from 0 to ∞.
Or equivalently:
The phase condition: The root locus of $1+K L(s)$ is the set of all $s \in \mathbb{C}$, such that $\angle L(s)=180^{\circ}$, i.e., $L(s)$ is real and negative.

Reminder: Rules for Sketching Root Loci

There are six rules for sketching root loci. These rules are mainly qualitative, and their purpose is to give intuition about impact of poles and zeros on performance.

These rules are:

- Rule A - number of branches (= number of open loop poles)
- Rule B - start points (= open loop poles)
- Rule C - end points (= open loop zeros)
- Rule D - real locus (located relative to real open-loop poles/zeros)
- Rule E - asymptotes
- Rule F - $j \omega$-crossings

Last time, we have covered Rules A-C (and a bit of D ...)

Example

Let's consider $\quad L(s)=\frac{s+1}{\left.s(s+2)(s+1)^{2}+1\right)}$

- Rule A: $\left\{\begin{array}{l}m=1 \\ n=4\end{array} \Longrightarrow 4\right.$ branches
- Rule B: branches start at open-loop poles

$$
s=0, s=-2, s=-1 \pm j
$$

- Rule C: branches end at open-loop zeros $s=-1, \pm \infty$

Example, continued

Three more rules:

- Rule D: real locus
- Rule E: asymptotes
- Rule F: $j \omega$-crossings

Rules D and E are both based on the fact that

$$
1+K L(s)=0 \text { for some } K>0 \quad \Longleftrightarrow \quad L(s)<0
$$

Characteristic equation in our example:

$$
\begin{aligned}
& \underbrace{s(s+2)\left((s+1)^{2}+1\right)}_{a(s)}+K \underbrace{(s+1)}_{b(s)}=0 \\
& s^{4}+4 s^{3}+6 s^{2}+(4+K) s+K=0
\end{aligned}
$$

- don't even think about factoring this polynomial!!

Rule D: Real Locus

The branches of the RL start at the open-loop poles. Which way do they go, left or right?

Recall the phase condition:

$$
1+K L(s)=0 \quad \Longleftrightarrow \quad \angle L(s)=180^{\circ}
$$

$$
\begin{aligned}
\angle L(s) & =\angle \frac{b(s)}{a(s)} \\
& =\angle \frac{\left(s-z_{1}\right)\left(s-z_{2}\right) \ldots\left(s-z_{m}\right)}{\left(s-p_{1}\right)\left(s-p_{2}\right) \ldots\left(s-p_{n}\right)} \\
& =\sum_{i=1}^{m} \angle\left(s-z_{i}\right)-\sum_{j=1}^{n} \angle\left(s-p_{j}\right)
\end{aligned}
$$

- this sum must be $\pm 180^{\circ}$ for any s that lies on the RL.

Rule D: Real Locus

So, we try test points:

$$
\begin{aligned}
& \angle\left(s_{1}-z_{1}\right)=0^{\circ} \quad\left(s_{1}>z_{1}\right) \\
& \angle\left(s_{1}-p_{1}\right)=180^{\circ} \quad\left(s_{1}<p_{1}\right) \\
& \angle\left(s_{1}-p_{2}\right)=0^{\circ} \quad\left(s_{1}>p_{2}\right) \\
& \angle\left(s_{1}-p_{3}\right)=-\angle\left(s_{1}-p_{4}\right) \\
& \text { (conjugate poles cancel) }
\end{aligned}
$$

$$
\begin{aligned}
& \angle\left(s_{1}-z_{1}\right)-\left[\angle\left(s_{1}-p_{1}\right)+\angle\left(s_{1}-p_{2}\right)+\angle\left(s_{1}-p_{3}\right)+\angle\left(s_{1}-p_{4}\right)\right] \\
& \quad=0^{\circ}-\left[180^{\circ}+0^{\circ}+0^{\circ}\right]=-180^{\circ} \quad \checkmark s_{1} \text { is on RL }
\end{aligned}
$$

Rule D: Real Locus

Try more test points:

$$
\begin{aligned}
& \angle\left(s_{2}-z_{1}\right)=180^{\circ} \quad\left(s_{2}<z_{2}\right) \\
& \angle\left(s_{2}-p_{1}\right)=180^{\circ} \quad\left(s_{2}<p_{1}\right) \\
& \angle\left(s_{2}-p_{2}\right)=0^{\circ} \quad\left(s_{2}>p_{2}\right) \\
& \angle\left(s_{2}-p_{3}\right)=-\angle\left(s_{1}-p_{4}\right) \\
& \text { (conjugate poles cancel) }
\end{aligned}
$$

$$
\begin{aligned}
& \angle\left(s_{2}-z_{1}\right)-\left[\angle\left(s_{2}-p_{1}\right)+\angle\left(s_{2}-p_{2}\right)+\angle\left(s_{2}-p_{3}\right)+\angle\left(s_{2}-p_{4}\right)\right] \\
& \quad=180^{\circ}-\left[180^{\circ}+0^{\circ}+0^{\circ}\right]=0^{\circ} \quad \times s_{1} \text { is not on RL }
\end{aligned}
$$

Rule D: Real Locus

Rule D: If s is real, then it is on the RL of $1+K L$ if and only if there are an odd number of real open-loop poles and zeros to the right of s.

Rule E: Asymptotes

How does the locus look as $s \rightarrow \infty$?

$$
\begin{aligned}
180^{\circ}=\angle L(s) & =\angle \frac{s^{m}+b_{1} s^{m-1}+\ldots}{s^{n}+a_{1} s^{n-1}+\ldots} \\
& =\angle \frac{s^{m-n}+b_{1} s^{m-n-1}+\ldots}{1+a_{1} s^{-1}+\ldots} \\
& \simeq \angle s^{m-n} \text { if }|s| \rightarrow \infty \quad(\text { recall } m \leq n)
\end{aligned}
$$

Claim: If $\angle s^{m-n}=180^{\circ}$, then

$$
\angle s=\frac{180^{\circ}+\ell \cdot 360^{\circ}}{n-m}, \quad \ell=0,1, \ldots, n-m-1
$$

Proof:

$$
\begin{aligned}
& s=|s| e^{j \angle s} \quad s^{m-n}= \\
& (m-n) \angle s=\left.180^{\circ} \quad \Longrightarrow \quad\right|^{m-n} e^{j(m-n) \angle s} \\
& (m-n) \angle s=180^{\circ}+\ell \cdot 360^{\circ}
\end{aligned}
$$

Rule E: Asymptotes

Rule E: Branches near ∞ have phase

$$
\begin{aligned}
\angle s & \simeq \frac{180^{\circ}+\ell \cdot 360^{\circ}}{n-m} \\
& =\frac{(2 \ell+1) \cdot 180^{\circ}}{n-m}, \quad \ell=0,1, \ldots, n-m-1
\end{aligned}
$$

Note: if $m=n$, then there are no branches at ∞.

Back to Example: Rule E

Branches near ∞ have phase

$$
\angle s=\frac{(2 \ell+1) \cdot 180^{\circ}}{n-m}, \quad \ell=0,1, \ldots, n-m-1
$$

In our example, $L(s)=\frac{s+1}{\left.s(s+2)(s+1)^{2}+1\right)} \quad\left\{\begin{array}{l}n=4 \\ m=1\end{array}\right.$

$$
\begin{array}{ll}
& \angle s=\frac{(2 \ell+1) \cdot 180^{\circ}}{3}, \quad \ell=0,1,2 \\
\ell=0: & \frac{2 \cdot 0+1}{3} 180^{\circ}=60^{\circ} \\
\ell=1: & \frac{2 \cdot 1+1}{3} 180^{\circ}=180^{\circ} \\
\ell=2: & \frac{2 \cdot 2+1}{3} 180^{\circ}=\frac{5}{3} 180^{\circ}=\left(2-\frac{1}{3}\right) 180^{\circ}=-60^{\circ}
\end{array}
$$

- asymptotes have angles $60^{\circ}, 180^{\circ},-60^{\circ}$

Rule F: $j \omega$-crossings

Do the branches of the root locus cross the $j \omega$ axis?
(transition from stability to instability)
Goal: determine if the equation

$$
a(j \omega)+K b(j \omega)=0
$$

has a solution $\omega \geq 0$ for some $K>0$.
Best approach here: use the Routh test to first determine the critical value of K (when the characteristic polynomial becomes unstable), then plug it in and solve for $j \omega$-crossings (numerically or analytically).

Rule F: $j \omega$-crossings

In our example, the characteristic polynomial is

$$
s^{4}+4 s^{3}+6 s^{2}+(4+K) s+K
$$

Form the Routh array:

$$
\begin{array}{cccc}
s^{4}: & 1 & 6 & K \\
s^{3}: & 4 & 4+K & 0 \\
s^{2}: & 20-K & 4 K & \\
s^{1}: & 80-K^{2} & 0 & \\
s^{0}: & 4 K & &
\end{array}
$$

For stability, need $20-K>0,80-K^{2}>0,4 K>0$
The characteristic polynomial is stable for $K<\sqrt{80}=4 \sqrt{5}$

$$
\Longrightarrow K_{\text {critical }}=4 \sqrt{5}
$$

Rule F: $j \omega$-crossings

In our example, the characteristic polynomial is

$$
s^{4}+4 s^{3}+6 s^{2}+(4+K) s+K
$$

The critical value: $K=4 \sqrt{5}$ (from Routh test).
To find the $j \omega$-crossing, plug in and solve:

$$
\begin{aligned}
& (j \omega)^{4}+4(j \omega)^{3}+6(j \omega)^{2}+(4+4 \sqrt{5}) j \omega+4 \sqrt{5}=0 \\
& \omega^{4}-4 j \omega^{3}-6 \omega^{2}+(4+4 \sqrt{5}) j \omega+4 \sqrt{5}=0
\end{aligned}
$$

real part: $\quad \omega^{4}-6 \omega^{2}+4 \sqrt{5}=0$
imag. part: $\quad-4 \omega^{3}+4(1+\sqrt{5}) \omega=0 \quad \omega^{2}=1+\sqrt{5}$

$$
j \omega \text {-crossing at } j \omega_{0}=\sqrt{1+\sqrt{5}} \approx 1.8, \text { when } K=4 \sqrt{5} \approx 8.9
$$

Complete Root Locus

$$
L(s)=\frac{s+1}{\left.s(s+2)(s+1)^{2}+1\right)}
$$

Rule A: 4 branches

Rule B: branches start at p_{1}, \ldots, p_{4}
Rule C: branches end at $z_{1}, \pm \infty$
Rule D: real locus $=\left[z_{1}, p_{1}\right] \cup\left(-\infty, p_{2}\right]$
Rule E: asymptotes form angles at $60^{\circ}, 180^{\circ},-60^{\circ}$
Rule F: $j \omega$-crossings at $\pm j \omega_{0}$, where

$$
\omega_{0}=\sqrt{1+\sqrt{5}} \approx 1.8
$$

when $K=4 \sqrt{5} \approx 8.9$
(transition from stability to instability)

Using RL to Select Parameter Values

In Lab 5, you will need to select the value of gain K that corresponds to a desired pole on the root locus.

Here is one way of doing it:

\[

\]

Control Design Using Root Locus

Case study: double integrator, transfer function $G(s)=\frac{1}{s^{2}}$
Control objective: ensure stability; meet time response specs.
First, let's try a simple P-gain:

Closed-loop transfer function:

$$
\frac{\frac{K}{s^{2}}}{1+\frac{K}{s^{2}}}=\frac{K}{s^{2}+K}
$$

Double Integrator with P-Gain

Closed-loop transfer function:

$$
\frac{\frac{K}{s^{2}}}{1+\frac{K}{s^{2}}}=\frac{K}{s^{2}+K}
$$

Characteristic equation:

$$
s^{2}+K=0
$$

Closed-loop poles: $s= \pm \sqrt{K} j$

This confirms what we already knew: P-gain alone does not deliver stability.

Double Integrator with PD-Control

Characteristic equation: $\begin{gathered}1+\underbrace{\left(K_{\mathrm{P}}+K_{\mathrm{D}} s\right)}_{G_{c}(s)} \cdot \underbrace{\frac{1}{s^{2}}}_{G_{p}(s)}=0 \\ s^{2}+K_{\mathrm{D}} s+K_{\mathrm{P}}=0\end{gathered}$
To use the RL method, we need to convert it into the Evans form $1+K L(s)=0$, where $L(s)=\frac{b(s)}{a(s)}=\frac{s^{m}+b_{1} s^{m-1}+\ldots}{s^{n}+a_{1} s^{n-1}+\ldots}$

$$
\begin{aligned}
& 1+\left(K_{\mathrm{P}}+K_{\mathrm{D}} s\right) \frac{1}{s^{2}}=1+K_{\mathrm{D}} \cdot \frac{s+K_{\mathrm{P}} / K_{\mathrm{D}}}{s^{2}} \\
\Longrightarrow & \left.K=K_{\mathrm{D}}, L(s)=\frac{s+K_{\mathrm{P}} / K_{\mathrm{D}}}{s^{2}} \quad \text { (assume } K_{\mathrm{P}} / K_{\mathrm{D}} \text { fixed, }=1\right)
\end{aligned}
$$

Double Integrator with PD-Control

Characteristic equation: $\quad 1+K \cdot \frac{s+1}{s^{2}}=0$
Here we can still write out the roots explicitly:

$$
s^{2}+K s+K=0 \quad \Longrightarrow \quad s=\frac{-K \pm \sqrt{K^{2}-4 K}}{2}
$$

But let's actually draw the RL using the rules:
Rule A: 2 branches
Rule B: both start at $s=0$
Rule C: one ends at $z_{1}=-1$, the other at ∞
Rule D: one branch will go off to $-\infty$
Rule E: asymptote angles at 180°
Rule F: no $j \omega$-crossings except for

$s=p_{1}=p_{2}=0$

Double Integrator with PD-Control

Characteristic equation: $\quad 1+K \cdot \frac{s+1}{s^{2}}=0$

What can we conclude from this root locus about stabilization?

- all closed-loop poles are in LHP (we already knew this from Routh, but now can visualize)
- nice damping, so can meet reasonable specs

So, the effect of D-gain was to introduce an open-loop zero into LHP, and this zero "pulled" the root locus into LHP, thus stabilizing the system.

Dynamic Compensation

We can use RL to visualize the effect of adding D-gain: add a LHP zero, pull the closed-loop poles into LHP - stabilization!!

However: we already know that PD control is not physically realizable (lack of causality).

Dynamic compensation (or dynamic control): consider controllers more general than just P-gain, but implementable by causal systems of the form

$$
\begin{aligned}
\dot{z} & =A z+B e \\
u & =C z+D e
\end{aligned}
$$

- so, any proper transfer function is admissible

Approximate PD Using Dynamic Compensation

Reminder: we can approximate the D-controller $K_{\mathrm{D}} s$ by

$$
K_{\mathrm{D}} \frac{p s}{s+p} \longrightarrow K_{\mathrm{D}} s \text { as } p \rightarrow \infty
$$

- here, $-p$ is the pole of the controller.

So, we replace the PD controller $K_{\mathrm{P}}+K_{\mathrm{D}} s$ by

$$
K(s)=K_{\mathrm{P}}+K_{\mathrm{D}} \frac{p s}{s+p}
$$

Closed-loop poles: $1+\left(K_{\mathrm{P}}+K_{\mathrm{D}} \frac{p s}{s+p}\right) G(s)=0$

Approximate PD Using Dynamic Compensation

Closed-loop poles: $1+\left(K_{\mathrm{P}}+K_{\mathrm{D}} \frac{p s}{s+p}\right) G(s)=0$
Transform into Evans' canonical form:

$$
\begin{aligned}
K_{\mathrm{P}}+K_{\mathrm{D}} \frac{p s}{s+p} & =\frac{\left(K_{\mathrm{P}}+p K_{\mathrm{D}}\right) s+p K_{\mathrm{P}}}{s+p} \\
& =\left(K_{\mathrm{P}}+p K_{\mathrm{D}}\right) \cdot \frac{s+\frac{p K_{\mathrm{P}}}{K_{\mathrm{P}}+p K_{\mathrm{D}}}}{s+p}
\end{aligned}
$$

Thus, we can write the controller as $K \cdot \frac{s+z}{s+p}$, where:

- the parameter $K=K_{\mathrm{P}}+p K_{\mathrm{D}}$ is a combination of P-gain, D-gain, and p
- the controller has an open-loop zero at $-z=-\frac{p K_{\mathrm{P}}}{K}$

Approximate PD Using Dynamic Compensation

Double integrator:

Characteristic equation:

$$
1+K \cdot \frac{s+z}{s+p} \cdot \frac{1}{s^{2}}=1+K L(s)=0
$$

Note: $L(s)$ is not the open-loop transfer function; it comes from the forward gain shaped by the controller acting on the plant.

Characteristic equation: $\begin{gathered}1+\underbrace{\left(K_{\mathrm{P}}+K_{\mathrm{D}} s\right)}_{G_{c}(s)} \cdot \underbrace{\frac{1}{s^{2}}}_{G_{p}(s)}=0 \\ s^{2}+K_{\mathrm{D}} s+K_{\mathrm{P}}=0\end{gathered}$
To use the RL method, we need to convert it into the Evans
form $1+K L(s)=0$, where $L(s)=\frac{b(s)}{a(s)}=\frac{s^{m}+b_{1} s^{m-1}+\ldots}{s^{n}+a_{1} s^{n-1}+\ldots}$

$$
\begin{aligned}
& 1+\left(K_{\mathrm{P}}+K_{\mathrm{D}} s\right) \frac{1}{s^{2}}=1+K_{\mathrm{D}} \cdot \frac{s+K_{\mathrm{P}} / K_{\mathrm{D}}}{s^{2}} \\
\Longrightarrow & K=K_{\mathrm{D}}, L(s)=\frac{s+K_{\mathrm{P}} / K_{\mathrm{D}}}{s^{2}} \quad\left(\text { assume } K_{\mathrm{P}} / K_{\mathrm{D}} \text { fixed, }=1\right)
\end{aligned}
$$

