Plan of the Lecture

- ▶ Review: introduction to Root Locus
- ► Today's topic: design using Root Locus; introduction to dynamic compensation

Goal: learn how to use Root Locus in control system design (stabilization, time response shaping) and to visualize the effect of various controller types on system performance.

Reading: FPE, Chapter 5

Note!! The way I teach the Root Locus differs a bit from what the textbook does (good news: it is simpler). Still, pay attention in class!!

Reminder: Root Locus

where
$$L(s) = \frac{b(s)}{a(s)} = \frac{s^m + b_1 s^{m-1} + \ldots + b_{m-1} s + b_m}{s^n + a_1 s^{n-1} + \ldots + a_{n-1} s + a_n}, \ m \le n$$

Root locus: the set of all $s \in \mathbb{C}$ that solve the *characteristic* equation

$$a(s) + Kb(s) = 0$$

as K varies from 0 to ∞ .

Or equivalently:

The phase condition: The root locus of 1 + KL(s) is the set of all $s \in \mathbb{C}$, such that $\angle L(s) = 180^{\circ}$, i.e., L(s) is real and negative.

Reminder: Rules for Sketching Root Loci

There are *six rules* for sketching root loci. These rules are mainly qualitative, and their purpose is to give intuition about impact of poles and zeros on performance.

These rules are:

- Rule A number of branches (= number of open loop poles)
- ▶ Rule B start points (= open loop poles)
- ▶ Rule C end points (= open loop zeros)
- Rule D real locus (located relative to *real* open-loop poles/zeros)
- ▶ Rule E asymptotes
- Rule F $j\omega$ -crossings

Last time, we have covered Rules A–C (and a bit of D ...)

Example

Let's consider
$$L(s) = \frac{s+1}{s(s+2)(s+1)^2+1}$$

 \blacktriangleright Rule A:
$$\begin{cases} m=1\\ n=4 \end{cases} \implies 4 \text{ branches} \end{cases}$$

- ▶ Rule B: branches start at open-loop poles $s = 0, s = -2, s = -1 \pm j$
- ► Rule C: branches end at open-loop zeros

$$s = -1, \pm \infty$$

Example, continued

Three more rules:

- ▶ Rule D: real locus
- ▶ Rule E: asymptotes
- ► Rule F: $j\omega$ -crossings

Rules D and E are both based on the fact that

$$1 + KL(s) = 0$$
 for some $K > 0 \iff L(s) < 0$

Characteristic equation in our example:

$$\underbrace{s(s+2)((s+1)^2+1)}_{a(s)} + K\underbrace{(s+1)}_{b(s)} = 0$$

$$s^4 + 4s^3 + 6s^2 + (4+K)s + K = 0$$

— don't even think about factoring this polynomial!!

The branches of the RL start at the open-loop poles. Which way do they go, left or right?

Recall the phase condition:

$$1 + KL(s) = 0 \qquad \Longleftrightarrow \qquad \angle L(s) = 180^{\circ}$$

$$\angle L(s) = \angle \frac{b(s)}{a(s)}$$
$$= \angle \frac{(s-z_1)(s-z_2)\dots(s-z_m)}{(s-p_1)(s-p_2)\dots(s-p_n)}$$
$$= \sum_{i=1}^m \angle (s-z_i) - \sum_{j=1}^n \angle (s-p_j)$$

— this sum must be $\pm 180^{\circ}$ for any s that lies on the RL.

So, we try test points:

$$\angle (s_1 - z_1) = 0^{\circ} \quad (s_1 > z_1) \angle (s_1 - p_1) = 180^{\circ} \quad (s_1 < p_1) \angle (s_1 - p_2) = 0^{\circ} \quad (s_1 > p_2) \angle (s_1 - p_3) = -\angle (s_1 - p_4) (\text{conjugate poles cancel})$$

$$\angle (s_1 - z_1) - [\angle (s_1 - p_1) + \angle (s_1 - p_2) + \angle (s_1 - p_3) + \angle (s_1 - p_4)]$$

= 0° - [180° + 0° + 0°] = -180° \sigma s_1 is on RL

 $\angle (s_2 - z_1) = 180^{\circ} \quad (s_2 < z_2)$ $\angle (s_2 - p_1) = 180^{\circ} \quad (s_2 < p_1)$ $\angle (s_2 - p_2) = 0^{\circ} \quad (s_2 > p_2)$ $\angle (s_2 - p_3) = -\angle (s_1 - p_4)$ (conjugate poles cancel)

$$\angle (s_2 - z_1) - [\angle (s_2 - p_1) + \angle (s_2 - p_2) + \angle (s_2 - p_3) + \angle (s_2 - p_4)]$$

= 180° - [180° + 0° + 0°] = 0° × s₁ is not on RL

Rule D: If s is *real*, then it is on the RL of 1 + KL if and only if there are an odd number of *real open-loop poles* and zeros to the right of s.

Rule E: Asymptotes

How does the locus look as $s \to \infty$?

$$180^{\circ} = \angle L(s) = \angle \frac{s^m + b_1 s^{m-1} + \dots}{s^n + a_1 s^{n-1} + \dots}$$
$$= \angle \frac{s^{m-n} + b_1 s^{m-n-1} + \dots}{1 + a_1 s^{-1} + \dots}$$
$$\simeq \angle s^{m-n} \text{ if } |s| \to \infty \qquad (\text{recall } m \le n)$$

Claim: If
$$\angle s^{m-n} = 180^\circ$$
, then
 $\angle s = \frac{180^\circ + \ell \cdot 360^\circ}{n-m}, \qquad \ell = 0, 1, \dots, n-m-1$

Proof:

$$s = |s|e^{j\angle s} \qquad s^{m-n} = |s|^{m-n}e^{j(m-n)\angle s}$$
$$(m-n)\angle s = 180^{\circ} \implies (m-n)\angle s = 180^{\circ} + \ell \cdot 360^{\circ}$$

Rule E: Asymptotes

Rule E: Branches near ∞ have phase

$$\angle s \simeq \frac{180^{\circ} + \ell \cdot 360^{\circ}}{n - m} = \frac{(2\ell + 1) \cdot 180^{\circ}}{n - m}, \qquad \ell = 0, 1, \dots, n - m - 1$$

Note: if m = n, then there are no branches at ∞ .

Back to Example: Rule E

Branches near ∞ have phase

$$\angle s = \frac{(2\ell+1) \cdot 180^{\circ}}{n-m}, \qquad \ell = 0, 1, \dots, n-m-1$$

In our example,
$$L(s) = \frac{s+1}{s(s+2)(s+1)^2+1}$$
 $\begin{cases} n=4\\ m=1 \end{cases}$

$$\angle s = \frac{(2\ell+1)\cdot 180^{\circ}}{3}, \qquad \ell = 0, 1, 2$$
$$\ell = 0: \qquad \frac{2\cdot 0+1}{3}180^{\circ} = 60^{\circ}$$
$$\ell = 1: \qquad \frac{2\cdot 1+1}{3}180^{\circ} = 180^{\circ}$$
$$\ell = 2: \qquad \frac{2\cdot 2+1}{3}180^{\circ} = \frac{5}{3}180^{\circ} = \left(2-\frac{1}{3}\right)180^{\circ} = -60^{\circ}$$

— asymptotes have angles 60° , 180° , -60°

Rule F: $j\omega$ -crossings

Do the branches of the root locus cross the $j\omega$ axis? (transition from *stability* to *instability*)

Goal: determine if the equation

 $a(j\omega) + Kb(j\omega) = 0$

has a solution $\omega \ge 0$ for some K > 0.

Best approach here: use the *Routh test* to first determine the critical value of K (when the characteristic polynomial becomes unstable), then plug it in and solve for $j\omega$ -crossings (numerically or analytically).

Rule F: $j\omega$ -crossings

In our example, the characteristic polynomial is

$$s^4 + 4s^3 + 6s^2 + (4+K)s + K$$

Form the Routh array:

$$s^{4}: 1 \qquad 6 \qquad K$$

$$s^{3}: 4 \qquad 4+K \qquad 0$$

$$s^{2}: 20-K \qquad 4K$$

$$s^{1}: 80-K^{2} \qquad 0$$

$$s^{0}: 4K$$

For stability, need 20 - K > 0, $80 - K^2 > 0$, 4K > 0

The characteristic polynomial is stable for $K < \sqrt{80} = 4\sqrt{5}$

$$\implies K_{\text{critical}} = 4\sqrt{5}$$

Rule F: $j\omega$ -crossings

In our example, the characteristic polynomial is

$$s^4 + 4s^3 + 6s^2 + (4+K)s + K$$

The critical value: $K = 4\sqrt{5}$ (from Routh test).

To find the $j\omega$ -crossing, plug in and solve:

$$(j\omega)^4 + 4(j\omega)^3 + 6(j\omega)^2 + (4 + 4\sqrt{5})j\omega + 4\sqrt{5} = 0$$

$$\omega^4 - 4j\omega^3 - 6\omega^2 + (4 + 4\sqrt{5})j\omega + 4\sqrt{5} = 0$$

real part: $\omega^4 - 6\omega^2 + 4\sqrt{5} = 0$
imag. part: $-4\omega^3 + 4(1 + \sqrt{5})\omega = 0$ $\omega^2 = 1 + \sqrt{5}$

 $j\omega$ -crossing at $j\omega_0 = \sqrt{1 + \sqrt{5}} \approx 1.8$, when $K = 4\sqrt{5} \approx 8.9$

Complete Root Locus

$$L(s) = \frac{s+1}{s(s+2)(s+1)^2 + 1}$$

Rule A: 4 branches

Rule B: branches start at p_1, \ldots, p_4

Rule C: branches end at $z_1, \pm \infty$

Rule D: real locus =
$$[z_1, p_1] \cup (-\infty, p_2]$$

Rule E: asymptotes form angles at $60^{\circ}, 180^{\circ}, -60^{\circ}$

Rule F: $j\omega$ -crossings at $\pm j\omega_0$, where

$$\omega_0 = \sqrt{1 + \sqrt{5}} \approx 1.8$$

when $K = 4\sqrt{5} \approx 8.9$

(transition from stability to instability)

Using RL to Select Parameter Values

In Lab 5, you will need to select the value of gain K that corresponds to a desired pole on the root locus.

Here is one way of doing it:

 $L(s) = -\frac{1}{K}$ — negative real number $K = -\frac{1}{L(s)} = \frac{1}{|L(s)|}$ $L(s) = \frac{(s - z_1) \dots (s - z_m)}{(s - p_1) \dots (s - p_n)}$ $\implies K = \frac{1}{|L(s)|} = \frac{|s - p_1| \dots |s - p_n|}{|s - z_1| \dots |s - z_m|}$

Control Design Using Root Locus

Case study: double integrator, transfer function $G(s) = \frac{1}{s^2}$ Control objective: ensure stability; meet time response specs. First, let's try a simple *P*-gain:

Closed-loop transfer function:

$$\frac{\frac{K}{s^2}}{1 + \frac{K}{s^2}} = \frac{K}{s^2 + K}$$

Double Integrator with P-Gain

►Re

This confirms what we already knew: P-gain alone does not deliver stability.

Double Integrator with PD-Control

$$R \xrightarrow{+} \underbrace{K_{\mathrm{P}} + K_{\mathrm{D}}s}_{G_{c}} \xrightarrow{1} \underbrace{\frac{1}{s^{2}}}_{G_{p}} Y$$

Characteristic equation:
$$1 + \underbrace{(K_{\rm P} + K_{\rm D}s)}_{G_c(s)} \cdot \underbrace{\frac{1}{s^2}}_{G_p(s)} = 0$$

 $s^2 + K_{\rm D}s + K_{\rm P} = 0$

1

To use the RL method, we need to convert it into the Evans form 1 + KL(s) = 0, where $L(s) = \frac{b(s)}{a(s)} = \frac{s^m + b_1 s^{m-1} + \dots}{s^n + a_1 s^{n-1} + \dots}$

$$1 + (K_{\rm P} + K_{\rm D}s)\frac{1}{s^2} = 1 + K_{\rm D} \cdot \frac{s + K_{\rm P}/K_{\rm D}}{s^2}$$
$$\implies K = K_{\rm D}, \ L(s) = \frac{s + K_{\rm P}/K_{\rm D}}{s^2} \qquad (\text{assume } K_{\rm P}/K_{\rm D} \text{ fixed}, = 1)$$

Double Integrator with PD-Control

Characteristic equation:
$$1 + K \cdot \frac{s+1}{s^2} = 0$$

Here we can still write out the roots explicitly:

$$s^2 + Ks + K = 0 \qquad \Longrightarrow \qquad s = \frac{-K \pm \sqrt{K^2 - 4K}}{2}$$

But let's actually draw the RL using the rules:

Rule A: 2 branches

Rule B: both start at s = 0Rule C: one ends at $z_1 = -1$, the other at ∞

Rule D: one branch will go off to $-\infty$ Rule E: asymptote angles at 180° Rule F: no $j\omega$ -crossings except for $s = p_1 = p_2 = 0$

Double Integrator with PD-Control

What can we conclude from this root locus about stabilization?

- ▶ all closed-loop poles are in LHP (we already knew this from Routh, but now can visualize)
- ▶ nice damping, so can meet reasonable specs

So, the effect of D-gain was to introduce an *open-loop zero* into LHP, and this zero "pulled" the root locus into LHP, thus stabilizing the system.

Dynamic Compensation

We can use RL to *visualize* the effect of adding D-gain: add a LHP zero, pull the closed-loop poles into LHP — stabilization!!

However: we already know that PD control is not physically realizable (lack of causality).

Dynamic compensation (or dynamic control): consider controllers more general than just P-gain, but implementable by *causal systems* of the form

$$\dot{z} = Az + Be$$
$$u = Cz + De$$

— so, any proper transfer function is admissible

Approximate PD Using Dynamic Compensation

Reminder: we can approximate the D-controller $K_{\rm D}s$ by

$$K_{\rm D} \frac{ps}{s+p} \longrightarrow K_{\rm D}s \text{ as } p \to \infty$$

— here, -p is the *pole* of the controller.

So, we replace the PD controller $K_{\rm P} + K_{\rm D}s$ by

$$K(s) = K_{\rm P} + K_{\rm D} \frac{ps}{s+p}$$

Approximate PD Using Dynamic Compensation

Closed-loop poles:
$$1 + \left(K_{\rm P} + K_{\rm D} \frac{ps}{s+p}\right)G(s) = 0$$

Transform into Evans' canonical form:

$$K_{\rm P} + K_{\rm D} \frac{ps}{s+p} = \frac{(K_{\rm P} + pK_{\rm D})s + pK_{\rm P}}{s+p}$$
$$= (K_{\rm P} + pK_{\rm D}) \cdot \frac{s + \frac{pK_{\rm P}}{K_{\rm P} + pK_{\rm D}}}{s+p}$$

Thus, we can write the controller as $K \cdot \frac{s+z}{s+p}$, where:

- ▶ the parameter $K = K_{\rm P} + pK_{\rm D}$ is a combination of P-gain, D-gain, and p
- ▶ the controller has an open-loop zero at $-z = -\frac{pK_{\rm P}}{K}$

Approximate PD Using Dynamic Compensation

Double integrator:

Characteristic equation:

$$1 + K \cdot \frac{s+z}{s+p} \cdot \frac{1}{s^2} = 1 + KL(s) = 0$$

Note: L(s) is not the open-loop transfer function; it comes from the forward gain shaped by the controller acting on the plant.

$$R \xrightarrow{+} \underbrace{K_{P} + \frac{K_{I}}{s}}_{G_{c}} \xrightarrow{I} \underbrace{1}_{s-1} \xrightarrow{} Y$$

Characteristic equation: $1 + \underbrace{(K_{\rm P} + K_{\rm D}s)}_{G_c(s)} \cdot \underbrace{\frac{1}{s^2}}_{G_p(s)} = 0$ $s^2 + K_{\rm D}s + K_{\rm P} = 0$

To use the RL method, we need to convert it into the Evans form 1 + KL(s) = 0, where $L(s) = \frac{b(s)}{a(s)} = \frac{s^m + b_1 s^{m-1} + \dots}{s^n + a_1 s^{n-1} + \dots}$

$$1 + (K_{\rm P} + K_{\rm D}s)\frac{1}{s^2} = 1 + K_{\rm D} \cdot \frac{s + K_{\rm P}/K_{\rm D}}{s^2}$$
$$\implies K = K_{\rm D}, \ L(s) = \frac{s + K_{\rm P}/K_{\rm D}}{s^2} \qquad (\text{assume } K_{\rm P}/K_{\rm D} \text{ fixed}, = 1)$$