Plan of the Lecture

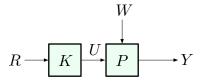
- ▶ Review: stability; Routh–Hurwitz criterion
- ► Today's topic: basic properties and benefits of feedback control

Goal: understand the difference between open-loop and closed-loop (feedback) control; examine the benefits of feedback: reference tracking and disturbance rejection; reduction of sensitivity to parameter variations; improvement of time response.

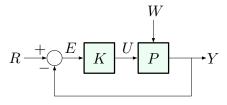
Reading: FPE, Section 4.1; lab manual

Two Basic Control Architectures

► Open-loop control

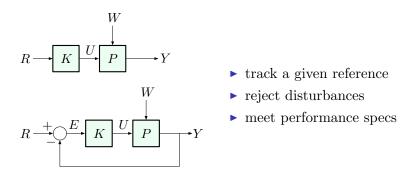


► Feedback (closed-loop) control



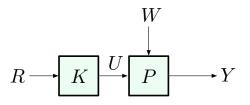
Here, W is a disturbance; K is not necessarily a static gain

Basic Objectives of Control



Intuitively, the difference between the open-loop and the closed-loop architectures is clear (think cruise control ...)

Open-Loop Control



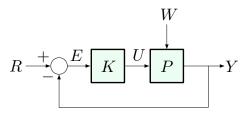
- cheaper/easier to implement (no sensor required)
- does not destabilize the system
 e.g., if both K and P are stable (all poles in OLHP),

$$\frac{Y}{R} = KP$$

is also stable:

 $\{\text{poles of }KP\}=\{\text{poles of }K\}\cup\{\text{poles of }P\}$

Feedback Control



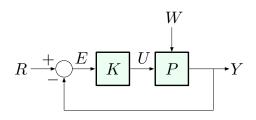
- ▶ more difficult/expensive to implement (requires a sensor and an information path from controller to actuator)
- may destabilize the system:

$$\frac{Y}{R} = \frac{KP}{1 + KP}$$

has new poles, which may be unstable

▶ but: feedback control is the *only way* to stabilize an unstable plant (this was the Wright brothers' key insight)

Benefits of Feedback Control



Feedback control:

- reduces steady-state error to disturbances
- ► reduces steady-state sensitivity to model uncertainty (parameter variations)
- ▶ improves time response

Case Study: DC Motor

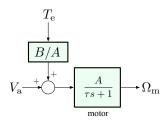
Inputs: $v_{\rm a}$ – input voltage

 $\tau_{\rm e}$ – load/disturbance torque

Outputs: $\omega_{\rm m}$ – angular speed of the motor

Transfer function:

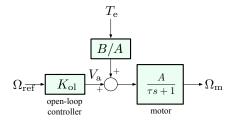
$$\Omega_{\rm m} = \frac{A}{\tau s + 1} V_{\rm a} + \frac{B}{\tau s + 1} T_{\rm e}$$
 τ - time constant
 A, B - system gains



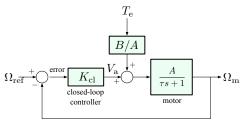
Objective: have $\Omega_{\rm m}$ approach and track a given reference $\Omega_{\rm ref}$ in spite of disturbance $T_{\rm e}$.

Two Control Configurations

► Open-loop control



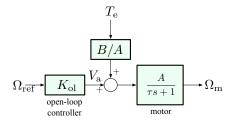
► Feedback (closed-loop) control



Disturbance Rejection

Goal: maintain $\omega_{\rm m} = \omega_{\rm ref}$ in steady state in the presence of constant disturbance.

Open-loop:



- the controller receives no information about the disturbance $\tau_{\rm e}$ (the only input is $\omega_{\rm ref}$, no feedback signal from anywhere else)
- so, let's attempt the following: design for no disturbance (i.e., $\tau_{\rm e}=0$), then see how the system works in general

Disturbance Rejection: Open-Loop Control

First assume zero disturbance:

$$\Omega_{\overline{\mathrm{ref}}}$$
 K_{ol}
 V_{a}
 $T_{\mathrm{open-loop}}$
 T_{out}
 T_{out}

Transfer function:

$$\frac{A}{\tau s + 1}$$
 (stable pole at $s = -1/\tau$)

We want DC gain = 1

$$\Omega_{\rm m} = \frac{A}{\tau s + 1} V_{\rm a} = \frac{K_{\rm ol} A}{\tau s + 1} \Omega_{\rm ref}$$

Let's just use constant gain: $K_{\rm ol} = 1/A$

$$\omega_{\rm m}(\infty) = \frac{1}{A} \cdot A \cdot \omega_{\rm ref} = \omega_{\rm ref}$$
 (for $T_{\rm e} = 0$)

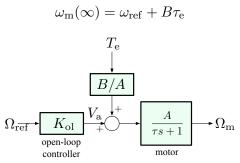
What happens in the presence of nonzero $T_{\rm e}$?

$$\Omega_{\rm m} = \underbrace{\frac{A}{\tau s + 1} \frac{1}{A}}_{\rm DC \; gain = 1} \Omega_{\rm ref} + \underbrace{\frac{B}{\tau s + 1}}_{\rm DC \; gain = B} T_{\rm e}$$

$$\Longrightarrow \omega_{\rm m}(\infty) = \underbrace{\omega_{\rm ref}}_{\rm step \; input} + B \underbrace{\tau_{\rm e}}_{\rm step \; input}$$

Disturbance Rejection: Open-Loop Control

Steady-state motor speed for constant reference and constant disturbance:



Conclusion: in the absence of disturbances, reference tracking is good, but disturbance rejection is pretty poor. Steady-state error is determined by B, and we have no control over it (and, in fact, cannot change this through any choice of controller K_{ol} , no matter how clever)

Disturbance Rejection: Feedback Control

$$\Omega_{\mathrm{ref}} \xrightarrow{+} \underbrace{\begin{array}{c} T_{\mathrm{e}} \\ B/A \\ V_{\mathrm{a}} \\ + \end{array}}_{\mathrm{closed-loop}} \underbrace{\begin{array}{c} T_{\mathrm{e}} \\ B/A \\ \hline V_{\mathrm{a}} \\ + \end{array}}_{\mathrm{motor}} \Omega_{\mathrm{m}}$$

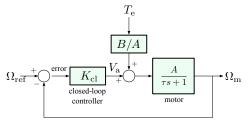
$$V_{\rm a} = K_{\rm cl}E = K_{\rm cl} \left(\Omega_{\rm ref} - \Omega_{\rm m}\right)$$

$$\Omega_{\rm m} = \frac{A}{\tau s + 1} K_{\rm cl} \left(\Omega_{\rm ref} - \Omega_{\rm m}\right) + \frac{B}{\tau s + 1} T_{\rm e}$$

Solve for
$$\Omega_{\rm m}$$
: $(\tau s + 1)\Omega_{\rm m} = AK_{\rm cl} (\Omega_{\rm ref} - \Omega_{\rm m}) + BT_{\rm e}$
 $(\tau s + 1 + AK_{\rm cl})\Omega_{\rm m} = AK_{\rm cl}\Omega_{\rm ref} + BT_{\rm e}$

$$\Omega_{\rm m} = \frac{AK_{\rm cl}}{\tau s + 1 + AK_{\rm cl}} \Omega_{\rm ref} + \frac{B}{\tau s + 1 + AK_{\rm cl}} T_{\rm e}$$

Disturbance Rejection: Feedback Control



$$\Omega_{\rm m} = \underbrace{\frac{AK_{\rm cl}}{\tau s + 1 + AK_{\rm cl}}}_{\rm DC \ gain = \frac{AK_{\rm cl}}{1 + AK_{\rm cl}}} \Omega_{\rm ref} + \underbrace{\frac{B}{\tau s + 1 + AK_{\rm cl}}}_{\rm DC \ gain = \frac{B}{1 + AK_{\rm cl}}} T_{\rm e}$$

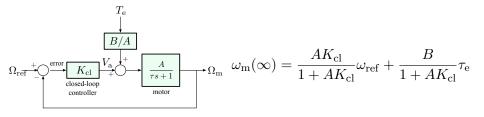
(provided all transfer functions are strictly stable)

Assuming that the reference ω_{ref} and the disturbance τ_{e} are constant, we apply FVT:

$$\omega_{\rm m}(\infty) = \frac{AK_{\rm cl}}{1 + AK_{\rm cl}}\omega_{\rm ref} + \frac{B}{1 + AK_{\rm cl}}\tau_{\rm e}$$

Disturbance Rejection: Feedback Control

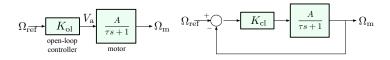
Steady-state speed for constant reference and disturbance:



Conclusions:

- ▶ $\frac{AK_{\rm cl}}{1 + AK_{\rm cl}} \neq 1$, but can be brought arbitrarily close to 1 when $K_{\rm cl} \to \infty$. Thus, steady-state tracking is good with high gain, but never quite as good as in open-loop case.
- ▶ $\frac{B}{1 + AK_{\rm cl}}$ is small (arbitrarily close to 0) for large $K_{\rm cl}$. Thus, much better disturbance rejection than with open-loop control.

Consider again our DC motor model, with no disturbance:



Bode's sensitivity concept: In the "nominal" situation, we have the motor with DC gain = A, and the overall transfer function, either open- or closed-loop, has some other DC gain (call it T).

Now suppose that, due to modeling error, changes in operating conditions, etc., the motor gain changes:

$$A \longrightarrow A + \underbrace{\delta A}_{\text{small}}$$

This will cause a perturbation in the overall DC gain:

$$T \longrightarrow T + \delta T$$
 (from calculus, to 1st order, $\delta T \approx \frac{\mathrm{d}T}{\mathrm{d}A} \delta A$)

$$A \longrightarrow A + \delta A$$
 (small perturbation in system gain)
 $T \longrightarrow T + \delta T$ (resultant perturbation in overall DC gain)

Hendrik Wade Bode (1905–1982)

Bode's sensitivity:

$$\mathcal{S} \triangleq \frac{\delta T/T}{\delta A/A}$$

$$S = \text{relative error}$$

$$= \frac{\text{normalized (percentage) error in } T}{\text{normalized (percentage) error in } A}$$

Let's compute S for our DC motor control example, both openand closed-loop.

Open-loop:

- ▶ nominal case $T_{\text{ol}} = K_{\text{ol}}A = \frac{1}{A}A = 1$
- perturbed case

$$A \longrightarrow A + \delta A$$

$$T_{\text{ol}} \longrightarrow K_{\text{ol}}(A + \delta A) = \underbrace{\frac{1}{A}}_{\text{design}} (A + \delta A) = \underbrace{\frac{1}{T_{\text{ol}}}}_{T_{\text{ol}}} + \underbrace{\frac{\delta A}{A}}_{\delta T_{\text{ol}}}$$

Sensitivity:
$$S_{\text{ol}} = \frac{\delta T_{\text{ol}}/T_{\text{ol}}}{\delta A_{\text{ol}}/A_{\text{ol}}} = \frac{\delta A/A}{\delta A/A} = 1$$

For example, a 5% error in A will cause a 5% error in $T_{\rm ol}$.

Closed-loop:

- ▶ nominal case $T_{\rm cl} = \frac{AK_{\rm cl}}{1 + AK_{\rm cl}}$
- perturbed case

$$A \longrightarrow A + \delta A$$
 $T_{\rm cl} \longrightarrow T_{\rm cl} + \underbrace{\delta T_{\rm cl}}_{\text{how to}}$

Taylor expansion:

$$T(A + \delta A) = T(A) + \frac{\mathrm{d}T}{\mathrm{d}A}(A)\delta A + \text{higher-order terms}$$

In our case:

$$\frac{\mathrm{d}T_{\rm cl}}{\mathrm{d}A} = \frac{K_{\rm cl}}{1 + AK_{\rm cl}} - \frac{AK_{\rm cl}^2}{(1 + AK_{\rm cl})^2} = \frac{K_{\rm cl}}{(1 + AK_{\rm cl})^2}$$
$$\delta T_{\rm cl} = \frac{K_{\rm cl}}{(1 + AK_{\rm cl})^2} \delta A$$

From before:

$$\delta T_{
m cl} = rac{K_{
m cl}}{(1 + AK_{
m cl})^2} \delta A$$

$$T_{
m cl} = rac{AK_{
m cl}}{1 + AK_{
m cl}}$$

Therefore

$$\delta T_{\rm cl}/T_{\rm cl} = \frac{\frac{K_{\rm cl}}{(1 + AK_{\rm cl})^2} \delta A}{\frac{AK_{\rm cl}}{1 + AK_{\rm cl}}} = \frac{1}{1 + AK_{\rm cl}} \delta A/A$$

Sensitivity:
$$S_{\rm cl} = \frac{\delta T_{\rm cl}/T_{\rm cl}}{\delta A/A} = \frac{1}{1 + AK_{\rm cl}}$$
 ($\ll 1$ for large $K_{\rm cl}$)

With high-gain feedback, we get smaller relative error due to parameter variations in the plant model.

Time Response

We still assume no disturbance: $\tau_e = 0$.

So far, we have focused on DC gain only (steady-state response). What about *transient response*?

Open-loop

$$\Omega_{\rm m} = \frac{AK_{\rm cl}}{\tau s + 1}\Omega_{\rm ref}$$

Pole at
$$s = -\frac{1}{\tau}$$
 \Longrightarrow transient response is $e^{-t/\tau}$

Here, τ is the *time constant*: the time it takes the system response to decay to 1/e of its starting value.

In the open-loop case, larger time constant means faster convergence to steady state. This is not affected by the choice of $K_{\rm cl}$ in any way!

Time Response

Closed-loop

$$\Omega_{\text{ref}} \xrightarrow{+} \Omega_{\text{m}} \longrightarrow K_{\text{cl}} \longrightarrow \Omega_{\text{m}}$$

$$\Omega_{\text{m}} = \frac{AK_{\text{cl}}}{\tau s + 1 + AK_{\text{cl}}} \Omega_{\text{ref}}$$

Closed-loop pole at
$$s = -\frac{1}{\tau} (1 + AK_{cl})$$
 (the only way to move poles around is via feedback)

Now the transient response is $e^{-\frac{1+AK_{cl}}{\tau}t}$, with

time constant =
$$\frac{\tau}{1 + AK_{cl}}$$

— for large K_{cl} , we have a much smaller time constant, i.e., faster convergence to steady-state.

Summary

Feedback control:

- reduces steady-state error to disturbances
- reduces steady-state sensitivity to model uncertainty (parameter variations)
- ▶ improves time response

Word of caution: high-gain feedback only works well for 1st-order systems; for higher-order systems, it will typically cause underdamping and instability.

Thus, we need a more sophisticated design than just static gain. We will take this up in the next lecture with *Proportional-Integral-Derivative* (PID) control.