
Plan of the Lecture

I Review: prototype 2nd-order system

I Today’s topic: transient response specifications

Goal: develop formulas and intuition for various features of the
transient response: rise time, overshoot, settling time.

Reading: FPE, Sections 3.3–3.4; lab manual



Prototype 2nd-Order System

H(s) =
ω2
n

s2 + 2ζωns+ ω2
n

By the quadratic formula, the poles are:

s = −ζωn ± ωn
√
ζ2 − 1

= −ωn
(
ζ ±

√
ζ2 − 1

)

The nature of the poles changes depending on ζ:

I ζ > 1 both poles are real and negative

I ζ = 1 one negative pole

I ζ < 1 two complex poles with negative real parts

s = −σ ± jωd
where σ = ζωn, ωd = ωn

√
1− ζ2



Prototype 2nd-Order System

H(s) =
ω2
n

s2 + 2ζωns+ ω2
n

, ζ < 1

The poles are

s = −ζωn ± jωn
√

1− ζ2 = −σ ± jωd
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Note that

σ2 + ω2
d = ζ2ω2

n + ω2
n − ζ2ω2

n

= ω2
n

cosϕ =
ζωn
ωn

= ζ



2nd-Order Response
Let’s compute the system’s impulse and step response:

H(s) =
ω2
n

s2 + 2ζωns+ ω2
n

=
ω2
n

(s+ σ)2 + ω2
d

I Impulse response:

h(t) = L −1{H(s)} = L −1
{

(ω2
n/ωd)ωd

(s+ σ)2 + ω2
d

}

=
ω2
n

ωd
e−σt sin(ωdt) (table, # 20)

I Step response:

L −1
{
H(s)

s

}
= L −1

{
σ2 + ω2

d

s[(s+ σ)2 + ω2
d]

}

= 1− e−σt
(

cos(ωdt) +
σ

ωd
sin(ωdt)

)
(table, #21)



2nd-Order Step Response

H(s) =
ω2
n

s2 + 2ζωns+ ω2
n

=
ω2
n

(s+ σ)2 + ω2
d

u(t) = 1(t) −→ y(t) = 1− e−σt
(

cos(ωdt) +
σ

ωd
sin(ωdt)

)

where σ = ζωn and ωd = ωn
√

1− ζ2 (damped frequency)
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The parameter ζ is called
the damping ratio

I ζ > 1: system is
overdamped

I ζ < 1: system is
underdamped

I ζ = 0: no damping
(ωd = ωn)



2nd-Order Step Response

H(s) =
ω2
n

s2 + 2ζωns+ ω2
n

=
ω2
n

(s+ σ)2 + ω2
d

u(t) = 1(t) −→ y(t) = 1− e−σt
(

cos(ωdt) +
σ

ωd
sin(ωdt)

)

where σ = ζωn and ωd = ωn
√

1− ζ2 (damped frequency)

We will see that the parameters ζ and ωn determine certain
important features of the transient part of the above step
response.

We will also learn how to pick ζ and ωn in order to shape these
features according to given specifications.



Transient Response Specifications: Rise Time
Let’s first take a look at 1st-order step response

H(s) =
a

s+ a
, a > 0 (stable pole)

DC gain = 1 (by FVT)

Step response: Y (s) =
H(s)

s
=

a

s(s+ a)
=

1

s
− 1

s+ a

y(t) = L −1{Y (s)} = 1(t)− e−at

rise time tr
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Rise time tr: the time it

takes to get from 10% of

steady-state value to 90%



Rise Time
Step response: y(t) = 1(t)− e−at

rise time tr
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Rise time tr: the time it

takes to get from 10% of

steady-state value to 90%

In this example, it is easy to compute tr analytically:

1− e−at0.1 = 0.1 e−at0.1 = 0.9 t0.1 = − ln 0.9

a

1− e−at0.9 = 0.9 e−at0.9 = 0.1 t0.9 = − ln 0.1

a

tr = t0.9 − t0.1 =
ln 0.9− ln 0.1

a
=

ln 9

a
≈ 2.2

a



Transient Response Specs

Now let’s consider the more interesting case: 2nd-order response

H(s) =
ω2
n

s2 + 2ζωns+ ω2
n

=
ω2
n

(s+ σ)2 + ω2
d

where σ = ζωn ωd = ωn
√

1− ζ2 (ζ < 1)
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Step response: y(t) = 1− e−σt
(

cos(ωdt) +
σ

ωd
sin(ωdt)

)



Transient-Response Specs

Step response: y(t) = 1− e−σt
(

cos(ωdt) +
σ

ωd
sin(ωdt)

)
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I rise time tr — time to get from 0.1y(∞) to 0.9y(∞)

I overshoot Mp and peak time tp

I settling time ts — first time for transients to decay to
within a specified small percentage of y(∞) and stay in
that range (we will usually worry about 5% settling time)



Transient-Response (or Time-Domain) Specs
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Do we want these quantities to be large or small?

I tr small

I Mp small

I tp small

I ts small

Trade-offs among specs: decrease tr −→ increase Mp, etc.
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Formulas for TD Specs: Rise Time
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Rise time tr — hard to calculate analytically.
Empirically, on the normalized time scale (t→ ωnt), rise times
are approximately the same

wntr ≈ 1.8 (exact for ζ = 0.5)

So, we will work with tr ≈
1.8

ωn
(good approx. when ζ ≈ 0.5)



Formulas for TD Specs: Overshoot & Peak Time
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tp is the first time t > 0 when y′(t) = 0

y(t) = 1− e−σt
(

cos(ωdt) +
σ

ωd
sin(ωdt)

)

y′(t) =

(
σ2

ωd
+ ωd

)
e−σt sin(ωdt) = 0 when ωdt = 0, π, 2π, . . .

so tp =
π

ωd



Formulas for TD Specs: Overshoot & Peak Time
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We have just computed tp =
π

ωd

To find Mp, plug this value into y(t):

Mp = y(tp)− 1 = −e−
σπ
ωd

(
cos

(
ωd

π

ωd

)
+

σ

ωd
sin

(
ωd

π

ωd

))

= exp

(
−σπ
ωd

)
= exp

(
− πζ√

1− ζ2

)
— exact formula



Formulas for TD Specs: Settling Time

2 4 6 8 10 12 14
wn t

0.2

0.4

0.6

0.8

1.0

1.2

1.4
yHtL

!ntr !ntp

Mp

!nts

ts = min

{
t > 0 :

|y(t′)− y(∞)|
y(∞)

≤ 0.05 for all t′ ≥ t
}

(here,

y(∞) = 1)

|y(t)− 1| = e−σt
∣∣∣∣cos(ωdt) +

σ

ωd
sin(ωdt)

∣∣∣∣

here, e−σt is what matters (sin and cos are bounded between

±1), so e−σts ≤ 0.05 this gives ts = − ln 0.05

σ
≈ 3

σ



Formulas for TD Specs

H(s) =
ω2
n

s2 + 2ζωns+ ω2
n

=
σ2 + ω2

d

(s+ σ)2 + ω2
d

tr ≈
1.8

ωn

tp =
π

ωd

Mp = exp

(
− πζ√

1− ζ2

)

ts ≈
3

σ



TD Specs in Frequency Domain
We want to visualize time-domain specs in terms of admissible
pole locations for the 2nd-order system

H(s) =
ω2
n

s2 + 2ζωns+ ω2
n

=
σ2 + ω2

d

(s+ σ)2 + ω2
d

where σ = ζωn

ωd = ωn
√

1− ζ2

Step response: y(t) = 1− e−σt
(

cos(ωdt) + σ
ωd

sin(ωdt)
)
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Rise Time in Frequency Domain
Suppose we want tr ≤ c (c is some desired given value)

tr ≈
1.8

ωn
≤ c =⇒ ωn ≥

1.8

c

Geometrically, we want poles to lie in the shaded region:

Re

Im

0

!n =
1.8

c

(recall that ωn is the magnitude of the poles)



Overshoot in Frequency Domain
Suppose we want Mp ≤ c

Mp = exp

(
− πζ√

1− ζ2

)

︸ ︷︷ ︸
decreasing function

≤ c — need large damping ratio

Geometrically, we want poles to lie in the shaded region:

Re

Im

0

'

ζ√
1− ζ2

=
ωnζ

ωn
√

1− ζ2

=
σ

ωd
= cotϕ

— need ϕ to be small

Intuition: good damping →
good decay in 1/2 period



Settling Time in Frequency Domain

Suppose we want ts ≤ c

ts ≈
3

σ
≤ c =⇒ σ ≥ 3

c

Want poles to be sufficiently fast (large enough magnitude of
real part):
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� =
3

c
Intuition: poles far to the
left → transients decay
faster → smaller ts



Combination of Specs

If we have specs for any combination of tr,Mp, ts, we can easily
relate them to allowed pole locations:

Re

Im

0

The shape and size of the
region for admissible pole
locations will change
depending on which
specs are more severely
constrained.

This is very appealing to engineers: easy to visualize things, no
such crisp visualization in time domain.

But: not very rigorous, and also only valid for our prototype
2nd-order system, which has only 2 poles and no zeros ...


