Plan of the Lecture

- Review: transient and steady-state response; DC gain and the FVT
- Today's topic: system-modeling diagrams; prototype 2nd-order system

Goal: develop a methodology for representing and analyzing systems by means of block diagrams; start analyzing a prototype 2nd-order system.

Reading: FPE, Sections 3.1-3.2; lab manual

System Modeling Diagrams

$$
\text { large system } \underset{\text { compose }}{\stackrel{\text { decompose }}{\rightleftharpoons}} \text { smaller blocks (subsystems) }
$$

- this is the core of systems theory

We will take smaller blocks from some given library and play with them to create/build more complicated systems.

All-Integrator Diagrams

Our library will consist of three building blocks:

integrator

summing junction

constant gain

Two warnings:

- We can (and will) work either with u, y (time domain) or with U, Y (s-domain) - will often go back and forth
- When working with block diagrams, we typically ignore initial conditions.

This is the lowest level we will go to in lectures; in the labs, you will implement these blocks using op amps.

Example 1

Build an all-integrator diagram for

$$
\ddot{y}=u \quad \Longleftrightarrow \quad s^{2} Y=U
$$

This is obvious:

or

Example 2

(building on Example 1)

$$
\begin{aligned}
\ddot{y}+a_{1} \dot{y}+a_{0} y=u \quad & \Longleftrightarrow s^{2} Y+a_{1} s Y+a_{0} Y \\
& \text { or } \quad Y(s)=\frac{U(s)}{s^{2}+a_{1} s+a_{0}}
\end{aligned}
$$

Always solve for the highest derivative:

$$
\ddot{y}=\underbrace{-a_{1} \dot{y}-a_{0} y+u}_{=v}
$$

Example 3

Build an all-integrator diagram for a system with transfer function

$$
H(s)=\frac{b_{1} s+b_{0}}{s^{2}+a_{1} s+a_{0}}
$$

Step 1: decompose $H(s)=\frac{1}{s^{2}+a_{1} s+a_{0}} \cdot\left(b_{1} s+b_{0}\right)$

- here, X is an auxiliary (or intermediate) signal

Note: $b_{0}+b_{1} s$ involves differentiation, which we cannot implement using an all-integrator diagram. But we will see that we don't need to do it directly.

Example 3, continued

Step 1: decompose $H(s)=\frac{1}{s^{2}+a_{1} s+a_{0}} \cdot\left(b_{1} s+b_{0}\right)$

Step 2: The transformation $U \rightarrow X$ is from Example 2:

Example 3, continued

Step 3: now we notice that

$$
Y(s)=b_{1} s X(s)+b_{0} X(s)
$$

and both X and $s X$ are available signals in our diagram. So:

Example 3, continued

All-integrator diagram for $H(s)=\frac{b_{1} s+b_{0}}{s^{2}+a_{1} s+a_{0}}$

Can we write down a state-space model corresponding to this diagram?

Example 3, continued

State-space model:

$$
\begin{aligned}
s^{2} X & =U-a_{1} s X-a_{0} X \\
\ddot{x} & =-a_{1} \dot{x}-a_{0} x+u
\end{aligned}
$$

$$
\begin{aligned}
Y & =b_{1} s X+b_{0} X \\
y & =b_{1} \dot{x}+b_{0} x
\end{aligned}
$$

Example 3, continued

State-space model:

$$
\begin{array}{cc}
\ddot{x}=-a_{1} \dot{x}-a_{0} x+u & y=b_{1} \dot{x}+b_{0} x \\
x_{1}=x, x_{2}=\dot{x} & \\
\binom{\dot{x}_{1}}{\dot{x}_{2}}=\left(\begin{array}{cc}
0 & 1 \\
-a_{0} & -a_{1}
\end{array}\right)\binom{x_{1}}{x_{2}}+\binom{0}{1} u & y=\left(\begin{array}{ll}
b_{0} & b_{1}
\end{array}\right)\binom{x_{1}}{x_{2}}
\end{array}
$$

This is called controller canonical form.

- Easily generalizes to dimension >1
- The reason behind the name will be made clear later in the semester

Example 3, wrap-up

All-integrator diagram for $H(s)=\frac{b_{1} s+b_{0}}{s^{2}+a_{1} s+a_{0}}$

State-space model:

$$
\binom{\dot{x}_{1}}{\dot{x}_{2}}=\left(\begin{array}{cc}
0 & 1 \\
-a_{0} & -a_{1}
\end{array}\right)\binom{x_{1}}{x_{2}}+\binom{0}{1} u \quad y=\left(\begin{array}{ll}
b_{0} & b_{1}
\end{array}\right)\binom{x_{1}}{x_{2}}
$$

Important: for a given $H(s)$, the diagram is not unique. But, once we build a diagram, the state-space equations are unique (up to coordinate transformations).

Basic System Interconnections

Now we will take this a level higher - we will talk about building complex systems from smaller blocks, without worrying about how those blocks look on the inside (they could themselves be all-integrator diagrams, etc.)

Block diagrams are an abstraction (they hide unnecessary "low-level" detail ...)

Block diagrams describe the flow of information

Basic System Interconnections: Series \& Parallel

Series connection

(G is common notation for t.f.'s)

$$
\frac{Y}{U}=G_{1} G_{2}
$$

(for SISO systems, the order of G_{1} and G_{2} does not matter)
Parallel connection

$$
\frac{Y}{U}=G_{1}+G_{2}
$$

Basic System Interconnections: Negative Feedback

Find the transfer function from R (reference) to Y

$$
\begin{aligned}
U & =R-W \\
Y & =G_{1} U \\
& =G_{1}(R-W) \\
& =G_{1} R-G_{1} G_{2} Y
\end{aligned}
$$

$$
\Longrightarrow Y=\frac{G_{1}}{1+G_{1} G_{2}} R
$$

Basic System Interconnections: Negative Feedback

$$
\Longrightarrow Y=\frac{G_{1}}{1+G_{1} G_{2}} R
$$

The gain of a negative feedback loop:

$$
\frac{\text { forward gain }}{1+\text { loop gain }}
$$

This is an important relationship, easy to derive - no need to memorize it.

Unity Feedback

Other feedback configurations are also possible:

This is called unity feedback - no component on the feedback path.

Common structure (saw this in Lecture 1):

- $R=$ reference
- $U=$ control input
- $Y=$ output
- $E=$ error
- $G_{1}=$ plant (also denoted by P)
- $G_{2}=$ controller or compensator (also denoted by C or K)

Unity Feedback

Let's practice with deriving transfer functions: $\frac{\text { forward gain }}{1+\text { loop gain }}$

- Reference R to output Y :

$$
\frac{Y}{R}=\frac{G_{1} G_{2}}{1+G_{1} G_{2}}
$$

- Reference R to control input U :

$$
\frac{U}{R}=\frac{G_{2}}{1+G_{1} G_{2}}
$$

- Error E to output Y :

$$
\frac{Y}{E}=G_{1} G_{2} \quad(\text { no feedback path })
$$

Block Diagram Reduction

Given a complicated diagram involving series, parallel, and feedback interconnections, we often want to write down an overall transfer function from one of the variables to another.

This requires lots of practice: read FPE, Section 3.2 for examples.

General strategy:

- Name all the variables in the diagram
- Write down as many relationships between these variables as you can
- Learn to recognize series, parallel, and feedback interconnections
- Replace them by their equivalents
- Repeat

Prototype 2nd-Order System

So far, we have only seen transfer functions that have either real poles or purely imaginary poles:

$$
\frac{1}{s+a}, \quad \frac{1}{(s+a)(s+b)}, \quad \frac{1}{s^{2}+\omega^{2}}
$$

We also need to consider the case of complex poles, i.e., ones that have $\operatorname{Re}(s) \neq 0$ and $\operatorname{Im}(s) \neq 0$.

For now, we will only look at second-order systems, but this will be sufficient to develop some nontrivial intuition (dominant poles).

Plus, you will need this for Lab 1.

Prototype 2nd-Order System

Consider the following transfer function:

$$
H(s)=\frac{\omega_{n}^{2}}{s^{2}+2 \zeta \omega_{n} s+\omega_{n}^{2}}
$$

Comments:

- $\zeta>0, \omega_{n}>0$ are arbitrary parameters
- the denominator is a general 2nd-degree monic polynomial, just written in a weird way
- $H(s)$ is normalized to have DC gain $=1$ (provided DC gain exists)

Prototype 2nd-Order System

$$
H(s)=\frac{\omega_{n}^{2}}{s^{2}+2 \zeta \omega_{n} s+\omega_{n}^{2}}
$$

By the quadratic formula, the poles are:

$$
\begin{aligned}
s & =-\zeta \omega_{n} \pm \omega_{n} \sqrt{\zeta^{2}-1} \\
& =-\omega_{n}\left(\zeta \pm \sqrt{\zeta^{2}-1}\right)
\end{aligned}
$$

The nature of the poles changes depending on ζ :

- $\zeta>1$ both poles are real and negative
- $\zeta=1 \quad$ one negative pole
- $\zeta<1$ two complex poles with negative real parts

$$
s=-\sigma \pm j \omega_{d}
$$

where

$$
\sigma=\zeta \omega_{n}, \omega_{d}=\omega_{n} \sqrt{1-\zeta^{2}}
$$

Prototype 2nd-Order System

$$
H(s)=\frac{\omega_{n}^{2}}{s^{2}+2 \zeta \omega_{n} s+\omega_{n}^{2}}, \quad \zeta<1
$$

The poles are

$$
s=-\zeta \omega_{n} \pm j \omega_{n} \sqrt{1-\zeta^{2}}=-\sigma \pm j \omega_{d}
$$

Note that

$$
\begin{aligned}
\sigma^{2}+\omega_{d}^{2} & =\zeta^{2} \omega_{n}^{2}+\omega_{n}^{2}-\zeta^{2} \omega_{n}^{2} \\
& =\omega_{n}^{2} \\
\cos \varphi & =\frac{\zeta \omega_{n}}{\omega_{n}}=\zeta
\end{aligned}
$$

2nd-Order Response

Let's compute the system's impulse and step response:

$$
H(s)=\frac{\omega_{n}^{2}}{s^{2}+2 \zeta \omega_{n} s+\omega_{n}^{2}}=\frac{\omega_{n}^{2}}{(s+\sigma)^{2}+\omega_{d}^{2}}
$$

- Impulse response:

$$
\begin{aligned}
h(t) & =\mathscr{L}^{-1}\{H(s)\}=\mathscr{L}^{-1}\left\{\frac{\left(\omega_{n}^{2} / \omega_{d}\right) \omega_{d}}{(s+\sigma)^{2}+\omega_{d}^{2}}\right\} \\
& =\frac{\omega_{n}^{2}}{\omega_{d}} e^{-\sigma t} \sin \left(\omega_{d} t\right) \quad(\text { table }, \# 20)
\end{aligned}
$$

- Step response:

$$
\begin{array}{r}
\mathscr{L}^{-1}\left\{\frac{H(s)}{s}\right\}=\mathscr{L}^{-1}\left\{\frac{\sigma^{2}+\omega_{d}^{2}}{s\left[(s+\sigma)^{2}+\omega_{d}^{2}\right]}\right\} \\
=1-e^{-\sigma t}\left(\cos \left(\omega_{d} t\right)+\frac{\sigma}{\omega_{d}} \sin \left(\omega_{d} t\right)\right) \quad(\text { table, \#21) }
\end{array}
$$

2nd-Order Step Response

$$
\begin{aligned}
H(s) & =\frac{\omega_{n}^{2}}{s^{2}+2 \zeta \omega_{n} s+\omega_{n}^{2}}=\frac{\omega_{n}^{2}}{(s+\sigma)^{2}+\omega_{d}^{2}} \\
u(t) & =1(t) \quad \longrightarrow \quad y(t)=1-e^{-\sigma t}\left(\cos \left(\omega_{d} t\right)+\frac{\sigma}{\omega_{d}} \sin \left(\omega_{d} t\right)\right)
\end{aligned}
$$

where $\sigma=\zeta \omega_{n}$ and $\omega_{d}=\omega_{n} \sqrt{1-\zeta^{2}}$ (damped frequency)

The parameter ζ is called the damping ratio

- $\zeta>1$: system is overdamped
- $\zeta<1$: system is underdamped
- $\zeta=0$: no damping $\left(\omega_{d}=\omega_{n}\right)$

