Problem 1. Consider the single-input, single-output transfer function:

\[Y(s) = \frac{s + 1}{s^2 + 2s + 2} U(s) \]

(a) Find a second-order state-space model that represents this transfer function.

(b) For this state-space model, calculate a state-feedback controller \(u = -Kx + r \) that places the closed-loop poles at \(-4\) and \(-25\).

(c) Construct a stable observer to estimate \(x \) based on the known inputs \(u \) and observations \(y \). You may use MATLAB for this part.

(d) With the controller and observer from the previous problems in place, calculate \(k_r \) such that \(u = -K\dot{x} + k_rr \) yields a closed-loop system \(Y/R \) with unity gain. You may use MATLAB.

(e) Plot the step response using MATLAB.

Problem 2. Consider the single-input, single-output transfer function:

\[G_p(s) = \frac{1 - s/2}{1 + s/2} \frac{1}{s^2} \]

(a) Find a third-order state-space model that represents this transfer function.

(b) For this state-space model, calculate a state-feedback controller \(u = -Kx + r \) that places the closed-loop poles at \(-4\), \(-13\), and \(-25\). You may use MATLAB to calculate this controller, but not to find the state-space model.

(c) Construct a stable observer, and put this together to form a compensator of the form \(U = -G_cY + G_rR \). You may use MATLAB.

(d) Calculate the Nyquist plot of \(G_cG_p \). You may use MATLAB to do so. Is the system stable? If so, calculate the gain and phase margins.