Plan of the Lecture

» Review: control design using frequency response

» Today’s topic: Nyquist stability criterion

Goal: learn how to detect the presence of RHP poles of the
closed-loop transfer function as the gain K is varied using

frequency-response data

Reading: FPE, Chapter 6



Review: Frequency Domain Design Method
Design based on Bode plots is good for:
» easily visualizing the concepts

want this high for s.s. tracking

1o want this low
for noise suppression

want this large for
stability and good
/ damping
PM j

—180°

» evaluating the design and seeing which way to change it

» using experimental data (frequency response of the
uncontrolled system can be measured experimentally)



Review: Frequency Domain Design Method

Design based on Bode plots is not good for:

» exact closed-loop pole placement (root locus is more
suitable for that)
» deciding if a given K is stabilizing or not ...

» we can only measure how far we are from instability (using
GM or PM), if we know that we are stable

» however, we don’t have a way of checking whether a given
K is stabilizing from frequency response data

What we want is a frequency-domain substitute for the
Routh-Hurwitz criterion — this is the Nyquist criterion, which
we will discuss in today’s lecture.



Nyquist Stability Criterion

Goal: count the number of RHP poles (if any) of the
closed-loop transfer function
KG(s)
1+ KG(s)

based on frequency-domain characteristics of the plant
transfer function G(s)



Review: Nyquist Plot
Consider an arbitrary strictly proper transfer function H:
H(s) = (s—zl)...(s—zm),
(s—p1)...(s—pn)
Nyquist plot: Im H (jw) vs. Re H(jw) as w varies from —oo to 0o

m<n

Im H(jw)

Re H(jw)




Nyquist Plot as a Mapping of the s-Plane

We can view the Nyquist plot of H as the image of the
imaginary axis {jw : —00 < w < 0o} under the mapping

H:C—=C

H

s-plane H(s)-plane



Transformation of a Closed Contour Under H

If we choose any closed curve (or contour) C' on the left, it will
get mapped by H to some other curve (contour) on the right:

Im s Im H(s)

~

Re s Re H(s)

Important: when working with contours in the complex plane,
always keep track of the direction in which we traverse the
contour (clockwise vs. counterclockwise)!!



Phase of H Along a Contour

For any s € C, the phase (or argument) of H(s) is
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We are interested in how ZH(s) changes as s traverses a closed,
clockwise () oriented contour C' in the complex plane.

We will look at several cases, depending on how the contour is
located relative to poles and zeros of H.



Case 1: Contour Encircles a Zero

Suppose that C' is a closed, O-oriented contour in C that

encircles a zero of H(s):
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How does ZH(s) change as we go around C7



Case 1: Contour Encircles a Zero
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How does ZH(s) change as we go around C?7

Let’s see what happens to angles from s to poles/zeros of H:

> 1 and o return to their original values

> 1)1 picks up a net change of —360°

» therefore, ZH(s) picks up a net change of —360°, so H(C')
encircles the origin once, clockwise (O)



Case 2: Contour Encircles a Pole

Suppose that C' is a closed, O-oriented contour in C that
encircles a pole of H(s):

How does ZH(s) change as we go around C7



Case 2: Contour Encircles a Pole

Im s Im H(s)

How does ZH(s) change as we go around C7

Let’s see what happens to angles from s to poles/zeros of H:
» 1 and 1 return to their original values
> 9 picks up a net change of —360°
» therefore, ZH(s) picks up a net change of 360°, so H(C')
encircles the origin once counterclockwise (0)



Case 3: Contour Encircles No Poles or Zeros

Suppose that C is a closed, O-oriented contour in C that does
not encircle any poles or zeros of H(s):

Im s
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How does ZH(s) change as we go around C7



Case 3: Contour Encircles No Poles or Zeros
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How does ZH(s) change as we go around C?7

Let’s see what happens to angles from s to poles/zeros of H:
> 1,2, all return to their original values

» therefore, no net change in ZH (s), so H(C') does not
encircle the origin



The Argument Principle
These special cases all lead to the following general result:

The Argument Principle. Let C be a closed, clockwise O
oriented contour not passing through any zeros or poles® of
H(s). Let H(C) be the image of C' under the map s — H(s):

H(C)={H(s):se€C}.
Then:

#(clockwise encirclements O of 0 by H(C))
= #(zeros of H(s) inside C) — #(poles of H(S) inside C).

More succinctly,

N=Z-P

* will see the reason for this later ...



The Argument Principle

N=Z7Z-P

» If N <0, it means that H(C) encircles the origin
counterclockwise (0).

» We do not want C to pass through any pole of H because
then H(C) would not be defined.

» We also do not want C' to pass through any zero of H
because then 0 € H(C'), so #(encirclements) is not
well-defined.



From Argument Principle to Nyquist Criterion

» We are interested in RHP poles, so let’s choose
a suitable contour C' that encloses the RHP:
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Harry Nyquist -7 -
(1889-1976)

» From now on, C' = imaginary axis plus the
“path around infinity.”

» If H is strictly proper, then H(co) = 0.



From Argument Principle to Nyquist Criterion

Harry Nyquist
(1889-1976)
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With this choice of C,

H(C) = Nyquist plot of H

(image of the imaginary axis under the map
H :C — C; if H is strictly proper, 0 = H(c0))



From Argument Principle to Nyquist Criterion

Im s S
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H(C) = Nyquist plot of H

We are interested in RHP roots of 1 + KG(s), where G is the
plant transfer function.

Thus, we choose H(s) =1+ KG(s)



From Argument Principle to Nyquist Criterion

R —JEQ—» K G(s) e

We now examine the Nyquist plot of H(s) =1+ KG(s).
By the argument principle,
N=Z_-P
where N = #(O encirclements of 0
by Nyquist plot of 1 + KG(s)),
Z = #(zeros of 1 + KG(s) inside C),
P = #(poles of 1 + KG(s) inside C)

Now we extract information about RHP roots of 1 + KG(s)



Nyquist Criterion: N

N

#(O encirclements of 0 by Nyquist plot of 1 + KG(s))
#(O encirclements of —1 by Nyquist plot of KG(s))
#(0O encirclements of —1//i by Nyquist plot of (/(s))

— KG(s)
— 1+KG(s)

— can be read off the Nyquist plot of the open-loop t.f. G!!



Nyquist Criterion: Z
R%@—» K G(s) Y

Therefore:

Z

#(zeros of 1 + KG(s) inside C)
#(RHP zeros of 1 + KG(s))
#(RHP closed-loop poles)



Nyquist Criterion: P

R —‘EQH K G(s) Y

a(s) = 49, deg(q) < deg(p)

q(s) _ p(s) + Kq(s)

1+KG(S):1+K]9(S)_ 05)

Therefore:

P = #(poles of 1 + KG(s) inside C)
(RHP poles of 1 + KG(s))

(RHP roots of p(s))
(

#
=#
=#
= #(RHP open-loop poles)



The Nyquist Theorem

R —JEQ—» K G(s) Y

Nyquist Theorem (1928) Assume that G(s) has no poles on
the imaginary axis*, and that its Nyquist plot does not pass
through the point —1/K. Then

N=/Z-P
#(O of —1/K by Nyquist plot of G(s))
= #(RHP closed-loop poles) — #(RHP open-loop poles)

* Easy to fix: draw an infinitesimally small circular path that goes around
the pole and stays in RHP



The Nyquist Stability Criterion

R iQH K G(s) Y

N = Z — P
~—~— ~— ~—
#(O of —1/K) #(unstable CL poles)  #(unstable OL poles)
Z=N+P

Z =0 == N=-P

Nyquist Stability Criterion. Under the assumptions of the
Nyquist theorem, the closed-loop system (at a given gain K) is
stable if and only if the Nyquist plot of G(s) encircles the
point —1/K P times counterclockwise, where P is the number
of unstable (RHP) open-loop poles of G(s).



Applying the Nyquist Criterion

Workflow:
Bode M and ¢-plots —— Nyquist plot

Advantages of Nyquist over Routh—Hurwitz

» can work directly with experimental frequency response
data (e.g., if we have the Bode plot based on
measurements, but do not know the transfer function)

» less computational, more geometric (came 55 years after

Routh)



Example

1

Gr1)s+2) (no open-loop RHP poles)

G(s) =

Characteristic equation:
(s+1)(s+2)+K =0 — $24+3s+K+2=0

From Routh, we already know that the closed-loop system is
stable for K > —2.

We will now reproduce this answer using the Nyquist criterion.



Example

1
=" -1 HP pol
G(s) GIDGLY) (no open-loop RHP poles)

Strategy:
» Start with the Bode plot of G

» Use the Bode plot to graph Im G(jw) vs. Re G(jw) for
0<w<

» This gives only a portion of the entire Nyquist plot

(Re G(jw),Im G(jw)), —00 < w < 00

> Symmetry:
G(—jw) = G(w)

— Nyquist plots are always symmetric w.r.t. the real axis!!



Example

G(s) = (s+1)1(5+2) (no open-loop RHP poles)

Bode plot: Nyquist plot:

1/2

00

—90°

—180°




Example: Applying the Nyquist Criterion

1

R e )

(no open-loop RHP poles)

Nyquist plot: #(O of —1/K)
= #(RHP CL poles) — #(RHP OL poles)
=0

— K € R is stabilizing if and only if

#(0 of ~1/K) =0

» If K >0, #(0O of =1/K) =0
» If0< —1/K < 1/2,
#(O of —1/K) >0 =
closed-loop stable for K > —2




