
Plan of the Lecture

I Review: control design using frequency response

I Today’s topic: Nyquist stability criterion

Goal: learn how to detect the presence of RHP poles of the
closed-loop transfer function as the gain K is varied using
frequency-response data

Reading: FPE, Chapter 6



Review: Frequency Domain Design Method
Design based on Bode plots is good for:

I easily visualizing the concepts
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I evaluating the design and seeing which way to change it

I using experimental data (frequency response of the
uncontrolled system can be measured experimentally)



Review: Frequency Domain Design Method

Design based on Bode plots is not good for:

I exact closed-loop pole placement (root locus is more
suitable for that)

I deciding if a given K is stabilizing or not ...
I we can only measure how far we are from instability (using

GM or PM), if we know that we are stable
I however, we don’t have a way of checking whether a given
K is stabilizing from frequency response data

What we want is a frequency-domain substitute for the
Routh–Hurwitz criterion — this is the Nyquist criterion, which
we will discuss in today’s lecture.



Nyquist Stability Criterion

G(s) Y
+
�R K

Goal: count the number of RHP poles (if any) of the
closed-loop transfer function

KG(s)

1 +KG(s)

based on frequency-domain characteristics of the plant
transfer function G(s)



Review: Nyquist Plot
Consider an arbitrary strictly proper transfer function H:

H(s) =
(s− z1) . . . (s− zm)

(s− p1) . . . (s− pn)
, m < n

Nyquist plot: ImH(jω) vs. ReH(jω) as ω varies from −∞ to∞
Im H(j!)

Re H(j!)



Nyquist Plot as a Mapping of the s-Plane

We can view the Nyquist plot of H as the image of the
imaginary axis {jω : −∞ < ω <∞} under the mapping
H : C→ C
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s-plane H(s)-plane



Transformation of a Closed Contour Under H

If we choose any closed curve (or contour) C on the left, it will
get mapped by H to some other curve (contour) on the right:

H��������!
C H(C)

Im s Im H(s)

Re H(s)Re s

Important: when working with contours in the complex plane,
always keep track of the direction in which we traverse the
contour (clockwise vs. counterclockwise)!!



Phase of H Along a Contour

For any s ∈ C, the phase (or argument) of H(s) is

∠H(s) = ∠(s− z1) . . . (s− zm)

(s− p1) . . . (s− pn)

=

m∑
i=1

∠(s− zi)−
n∑

j=1

∠(s− pj)

=
m∑
i=1

ψi −
n∑

j=1

ϕj

We are interested in how ∠H(s) changes as s traverses a closed,
clockwise (�) oriented contour C in the complex plane.

We will look at several cases, depending on how the contour is
located relative to poles and zeros of H.



Case 1: Contour Encircles a Zero

Suppose that C is a closed, �-oriented contour in C that
encircles a zero of H(s):
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C
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How does ∠H(s) change as we go around C?



Case 1: Contour Encircles a Zero
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H(C)

Im H(s)

Re H(s)
\H(s)

How does ∠H(s) change as we go around C?

Let’s see what happens to angles from s to poles/zeros of H:

I ϕ1 and ϕ2 return to their original values

I ψ1 picks up a net change of −360◦

I therefore, ∠H(s) picks up a net change of −360◦, so H(C)
encircles the origin once, clockwise (�)



Case 2: Contour Encircles a Pole

Suppose that C is a closed, �-oriented contour in C that
encircles a pole of H(s):

o

C
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How does ∠H(s) change as we go around C?



Case 2: Contour Encircles a Pole
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C
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Re s
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H(C)

Im H(s)

Re H(s)
\H(s)
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How does ∠H(s) change as we go around C?

Let’s see what happens to angles from s to poles/zeros of H:
I ϕ1 and ψ1 return to their original values
I ϕ2 picks up a net change of −360◦

I therefore, ∠H(s) picks up a net change of 360◦, so H(C)
encircles the origin once counterclockwise (	)



Case 3: Contour Encircles No Poles or Zeros

Suppose that C is a closed, �-oriented contour in C that does
not encircle any poles or zeros of H(s):

o
C

Im s

Re s

x

x

How does ∠H(s) change as we go around C?



Case 3: Contour Encircles No Poles or Zeros

o
C

Im s

Re s

x

x

H(C)

Im H(s)

Re H(s)

H��������!

How does ∠H(s) change as we go around C?

Let’s see what happens to angles from s to poles/zeros of H:

I ϕ1, ϕ2, ψ1 all return to their original values

I therefore, no net change in ∠H(s), so H(C) does not
encircle the origin



The Argument Principle

These special cases all lead to the following general result:

The Argument Principle. Let C be a closed, clockwise �
oriented contour not passing through any zeros or poles∗ of
H(s). Let H(C) be the image of C under the map s 7→ H(s):

H(C) = {H(s) : s ∈ C} .

Then:

#(clockwise encirclements � of 0 by H(C))

= #(zeros of H(s) inside C)−#(poles of H(S) inside C).

More succinctly,

N = Z − P

∗ will see the reason for this later ...



The Argument Principle

N = Z − P

I If N < 0, it means that H(C) encircles the origin
counterclockwise (	).

I We do not want C to pass through any pole of H because
then H(C) would not be defined.

I We also do not want C to pass through any zero of H
because then 0 ∈ H(C), so #(encirclements) is not
well-defined.



From Argument Principle to Nyquist Criterion

Harry Nyquist

(1889–1976)

I We are interested in RHP poles, so let’s choose
a suitable contour C that encloses the RHP :

Re s

Im s
infinity

I From now on, C = imaginary axis plus the
“path around infinity.”

I If H is strictly proper, then H(∞) = 0.



From Argument Principle to Nyquist Criterion

Harry Nyquist

(1889–1976)

Re s

Im s
infinity

With this choice of C,

H(C) = Nyquist plot of H

(image of the imaginary axis under the map
H : C→ C; if H is strictly proper, 0 = H(∞))



From Argument Principle to Nyquist Criterion

Re s

Im s
infinity

H(C) = Nyquist plot of H

We are interested in RHP roots of 1 +KG(s), where G is the
plant transfer function.

Thus, we choose H(s) = 1 +KG(s)



From Argument Principle to Nyquist Criterion

G(s) Y
+
�R K

We now examine the Nyquist plot of H(s) = 1 +KG(s).

By the argument principle,

N = Z − P,
where N = #(� encirclements of 0

by Nyquist plot of 1 +KG(s)),

Z = #(zeros of 1 +KG(s) inside C),

P = #(poles of 1 +KG(s) inside C)

Now we extract information about RHP roots of 1 +KG(s)



Nyquist Criterion: N

N = #(� encirclements of 0 by Nyquist plot of 1 +KG(s))

= #(� encirclements of −1 by Nyquist plot of KG(s))

= #(� encirclements of −1/K by Nyquist plot of G(s))

KGHsL
1+KGHsL

�1

— can be read off the Nyquist plot of the open-loop t.f. G!!



Nyquist Criterion: Z

G(s) Y
+
�R K

G(s) =
q(s)

p(s)
, deg(q) ≤ deg(p)

1 +KG(s) =
p(s) +Kq(s)

p(s)

closed-loop t.f. =
KG(s)

1 +KG(s)
=

Kq(s)

p(s) +Kq(s)

Therefore:

Z = #(zeros of 1 +KG(s) inside C)

= #(RHP zeros of 1 +KG(s))

= #(RHP closed-loop poles)



Nyquist Criterion: P

G(s) Y
+
�R K

G(s) =
q(s)

p(s)
, deg(q) ≤ deg(p)

1 +KG(s) = 1 +K
q(s)

p(s)
=
p(s) +Kq(s)

p(s)

Therefore:

P = #(poles of 1 +KG(s) inside C)

= #(RHP poles of 1 +KG(s))

= #(RHP roots of p(s))

= #(RHP open-loop poles)



The Nyquist Theorem

G(s) Y
+
�R K

Nyquist Theorem (1928) Assume that G(s) has no poles on
the imaginary axis∗, and that its Nyquist plot does not pass
through the point −1/K. Then

N = Z − P
#(� of −1/K by Nyquist plot of G(s))

= #(RHP closed-loop poles)−#(RHP open-loop poles)

∗ Easy to fix: draw an infinitesimally small circular path that goes around
the pole and stays in RHP



The Nyquist Stability Criterion

G(s) Y
+
�R K

N︸︷︷︸
#(� of −1/K)

= Z︸︷︷︸
#(unstable CL poles)

− P︸︷︷︸
#(unstable OL poles)

Z = N + P

Z = 0 =⇒ N = −P

Nyquist Stability Criterion. Under the assumptions of the
Nyquist theorem, the closed-loop system (at a given gain K) is
stable if and only if the Nyquist plot of G(s) encircles the
point −1/K P times counterclockwise, where P is the number
of unstable (RHP) open-loop poles of G(s).



Applying the Nyquist Criterion

Workflow:

Bode M and φ-plots −→ Nyquist plot

Advantages of Nyquist over Routh–Hurwitz

I can work directly with experimental frequency response
data (e.g., if we have the Bode plot based on
measurements, but do not know the transfer function)

I less computational, more geometric (came 55 years after
Routh)



Example

G(s) =
1

(s+ 1)(s+ 2)
(no open-loop RHP poles)

Characteristic equation:

(s+ 1)(s+ 2) +K = 0 ⇐⇒ s2 + 3s+K + 2 = 0

From Routh, we already know that the closed-loop system is
stable for K > −2.

We will now reproduce this answer using the Nyquist criterion.



Example

G(s) =
1

(s+ 1)(s+ 2)
(no open-loop RHP poles)

Strategy:

I Start with the Bode plot of G

I Use the Bode plot to graph Im G(jω) vs. Re G(jω) for
0 ≤ ω <∞

I This gives only a portion of the entire Nyquist plot

(Re G(jω), Im G(jω)) , −∞ < ω <∞

I Symmetry:
G(−jω) = G(jω)

— Nyquist plots are always symmetric w.r.t. the real axis!!



Example

G(s) =
1

(s+ 1)(s+ 2)
(no open-loop RHP poles)

Bode plot:
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Example: Applying the Nyquist Criterion

G(s) =
1

(s+ 1)(s+ 2)
(no open-loop RHP poles)

Nyquist plot:
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G(1) = 0

#(� of −1/K)

= #(RHP CL poles)−#(RHP OL poles)︸ ︷︷ ︸
=0

=⇒ K ∈ R is stabilizing if and only if

#(� of −1/K) = 0

I If K > 0, #(� of −1/K) = 0

I If 0 < −1/K < 1/2,
#(� of −1/K) > 0 =⇒
closed-loop stable for K > −2


