
Plan of the Lecture

I Review: stability from frequency response

I Today’s topic: control design using frequency response

Goal: understand the effect of various types of controllers
(PD/lead, PI/lag) on the closed-loop performance by reading
the open-loop Bode plot; develop frequency-response techniques
for shaping transient and steady-state response using dynamic
compensation

Reading: FPE, Chapter 6



Review: Phase Margin for 2nd-Order System

G(s) =
ω2
n

s2 + 2ζωns
, closed-loop t.f. =

ω2
n

s2 + 2ζωns+ ω2
n

PM
∣∣∣
K=1

= tan−1

(
2ζ√

4ζ4 + 1− 2ζ2

)
≈ 100 · ζ

Conclusions:

larger PM ⇐⇒ better damping

(open-loop quantity) (closed-loop characteristic)

Thus, the overshoot Mp = exp

(
− πζ√

1−ζ2

)
and resonant peak

Mr = 1

2ζ
√

1−ζ2
− 1 are both related to PM through ζ!!



Bode’s Gain-Phase Relationship

G(s) Y
+
�R K

Assuming that G(s) is minimum-phase (i.e., has no RHP
zeros), we derived the following for the Bode plot of KG(s):

low freq. real zero/pole complex zero/pole

mag. slope n up/down by 1 up/down by 2

phase n× 90◦ up/down by 90◦ up/down by 180◦

We can state this succinctly as follows:

Gain-Phase Relationship. Far enough from break-points,

Phase ≈ Magnitude Slope× 90◦



Bode’s Gain-Phase Relationship
Gain-Phase Relationship. Far enough from break-points,

Phase ≈ Magnitude Slope× 90◦

This suggests the following rule of thumb:

M = 1

want slope

= �1 here
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I M has slope −2 at ωc
⇒ φ(ωc) = −180◦

⇒ bad (no PM)

I M has slope −1 at ωc
⇒ φ(ωc) = −90◦

⇒ good (PM = 90◦)

— this is an important design guideline!!

(Similar considerations apply when M -plot has positive slope –
depends on the t.f.)



Gain-Phase Relationship & Bandwidth

G(s) Y
+
�R K

M-plot for open-loop t.f. KG:

M = 1

want slope

= �1 here
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Note: |KG(jω)| → ∞ as ω → 0

{
|KG(jωc)| = 1

∠G(jωc) = −90◦
⇒ KG(jωc) = −j

Closed-loop t.f.:

T (jωc) =
KG(jωc)

1 +KG(jωc)
=
−j

1− j

|T (jωc)| =
∣∣∣∣ −j1− j

∣∣∣∣ =
1√
2

|T (0)| = lim
ω→0

|KG(jω)|
|1 +KG(jω)| = 1

=⇒ ωc = ωBW (bandwidth)

I If PM = 90◦, then ωc = ωBW

I If PM < 90◦, then ωc ≤ ωBW ≤ 2ωc (see FPE)



Control Design Using Frequency Response

G(s) Y
+
�R K

Bode’s Gain-Phase Relationship suggests that we can shape the
time response of the closed-loop system by choosing K (or,
more generally, a dynamic controller KD(s)) to tune the Phase
Margin.

In particular, from the quantitative Gain-Phase Relationship,

Magnitude slope(ωc) = −1 =⇒ Phase(ωc) ≈ −90◦

— which gives us PM of 90◦ and consequently good damping.



Example

G(s) Y
+
�R KD(s)

Let G(s) =
1

s2
(double integrator)

Objective: design a controller KD(s) (K = scalar gain) to give

I stability

I good damping (will make this more precise in a bit)

I ωBW ≈ 0.5 (always a closed-loop characteristic)

Strategy:

I from Bode’s Gain-Phase Relationship, we want magnitude
slope = −1 at ωc =⇒ PM = 90◦ =⇒ good damping;

I if PM = 90◦, then ωc = ωBW =⇒ want ωc ≈ 0.5



Design, First Attempt

G(s) Y
+
�R KD(s)

G(s) =
1

s2

Let’s try proportional feedback:

D(s) = 1 =⇒ KD(s)G(s) = KG(s) =
K

s2
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slope = -2 everywhere
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This is not a good idea:
slope = −2 everywhere,
so no PM.

We already know that
P-gain alone won’t do
the job:

K + s2 = 0 (imag. poles)



Design, Second Attempt

G(s) Y
+
�R KD(s)

G(s) =
1

s2

Let’s try proportional-derivative feedback:

KD(s) = K(τs+ 1), where K = KP, Kτ = KD

Open-loop transfer function: KD(s)G(s) =
K(τs+ 1)

s2
.

Bode plot interpretation: PD controller introduces a Type 2
term in the numerator, which pushes the slope up by 1

— this has the effect of pushing the M-slope of KD(s)G(s)
from −2 to −1 past the break-point (ω = 1/τ).



Design, Second Attempt (PD-Control)

G(s) Y
+
�R KD(s)

Open-loop transfer function: KD(s)G(s) =
K(τs+ 1)

s2
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For the G-P relationship
to be valid, choose the
break-point several times
smaller than desired ωc:
=⇒ let’s take τ = 10

=⇒ 1

τ
= 0.1 =

ωc
5

Open-loop t.f.:

KD(s)G(s) =
K(10s+ 1)

s2



Design, Second Attempt (PD-Control)

G(s) Y
+
�R KD(s)

Open-loop transfer function: KD(s)G(s) =
K(10s+ 1)

s2
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I Want ωc ≈ 0.5

I This means that

M(j0.5) = 1

|KD(j0.5)G(j.05)|

=
K|5j + 1|

0.52

= 4K
√

26 ≈ 20K

=⇒ K =
1

20



PD Control Design: Evaluation

G(s) Y
+
�R KD(s)

G(s) =
1

s2
Initial design: KD(s) =

10s+ 1

20

What have we accomplished?

I PM ≈ 90◦ at ωc = 0.5

I still need to check in Matlab and iterate if necessary

Trade-offs:

I want ωBW to be large enough for fast response (larger
ωBW −→ larger ωn −→ smaller tr), but not too large to
avoid noise amplification at high frequencies

I PD control increases slope −→ increases ωc −→ increases
ωBW −→ faster response

I usual complaint: D-gain is not physically realizable, so let’s
try lead compensation



Lead Compensation: Bode Plot

KD(s) = K
s+ z

s+ p
, p� z

In Bode form:

KD(s) =
Kz

(
s
z + 1

)
p
(
s
p + 1

)
or, absorbing z/p into the overall gain, we have

KD(s) =
K
(
s
z + 1

)(
s
p + 1

)
Break-points:

I Type 1 zero with break-point at ω = z (comes first, z � p)

I Type 1 pole with break-point at ω = p



Lead Compensation: Bode Plot

KD(s) =
K
(
s
z + 1

)(
s
p + 1

)
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I magnitude levels off at
high frequencies =⇒ better
noise suppression

I adds phase, hence the term
“phase lead”



Lead Compensation and Phase Margin

KD(s) =
K
(
s
z + 1

)(
s
p + 1

)
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For best effect on PM, ωc
should be halfway between z
and p (on log scale):

logωc =
log z + log p

2
or ωc =

√
z · p

— geometric mean of z and p

Trade-offs: large p− z means

I large PM (closer to 90◦)

I but also bigger M at
higher frequencies (worse
noise suppression)



Back to Our Example: G(s) =
1

s2

Objectives (same as before):

I stability

I good damping

I ωBW close to 0.5

KG(s) =
K

s2
(w/o lead):
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after adding lead:
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— adding lead will increase ωc!!



Back to Our Example: G(s) =
1

s2
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After adding lead with
K = 1/4, what do we see?

I adding lead increases ωc

I =⇒ PM < 90◦

I =⇒ ωBW may be > ωc

To be on the safe side, we
choose a new value of K so that

ωc =
ωBW

2

(b/c generally ωc ≤ ωBW ≤ 2ωc)

Thus, we want

ωc = 0.25 =⇒ K =
1

16



Back to Our Example: G(s) =
1

s2
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Next, we pick z and p so that
ωc is approximately their
geometric mean:

e.g., z = 0.1, p = 2
√
z · p =

√
0.2 ≈ 0.447

Resulting lead controller:

KD(s) =
1

16

s

0.1
+ 1

s

2
+ 1

(may still need to be refined
using Matlab)



Lead Controller Design Using Frequency Response
General Procedure

1. Choose K to get desired bandwidth spec w/o lead

2. Choose lead zero and pole to get desired PM
I in general, we should first check PM with the K from 1,

w/o lead, to see how much more PM we need

3. Check design and iterate until specs are met.

This is an intuitive procedure, but it’s not very precise, requires
trial & error.


