
Plan of the Lecture

I Review: observability; Luenberger observer and state
estimation error.

I Today’s topic: joint observer and controller design:
dynamic output feedback.

Goal: learn how to design an observer and a controller to
achieve accurate closed-loop pole placement.

Reading: FPE, Chapter 7



Is Full State Feedback Always Available?

In a typical system, measurements are provided by sensors:

plant
u

y

controller

Full state feedback u = −Kx is not implementable!!

In that case, an observer is used to estimate the state x:

plantu
y

observer bx



State Estimation Using an Observer

If the system is observable, the state estimate x̂ is
asymptotically accurate:

‖x̂(t)− x(t)‖ =

√√√√
n∑

i=1

(x̂i(t)− xi(t))
2 t→∞−−−→ 0

If we are successful, then we can try estimated state feedback:
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Observability

Consider a single-output system (y ∈ R):

ẋ = Ax + Bu, y = Cx x ∈ Rn

The Observability Matrix is defined as

O(A,C) =




C
CA

...
CAn−1




We say that the above system is observable if its observability
matrix O(A,C) is invertible.

(This definition is only true for the single-output case; the
multiple-output case involves the rank of O(A,C).)



Observer Canonical Form
A single-output state-space model

ẋ = Ax + Bu, y = Cx

is said to be in Observer Canonical Form (OCF) if the matrices
A,C are of the form

A =




0 0 . . . 0 0 ∗
1 0 . . . 0 0 ∗
...

...
. . .

...
...

...
0 0 . . . 1 0 ∗
0 0 . . . 0 1 ∗




, C =
(
0 0 . . . 0 1

)

Fact: A system in OCF is always observable!!

(The proof of this for n > 2 uses the Jordan canonical form, we will

not worry about this.)



The Luenberger Observer

System: ẋ = Ax

y = Cx

Observer: ˙̂x = (A− LC)x̂ + Ly.

What happens to state estimation error e = x− x̂ as t→∞?

ė = (A− LC)e

Does e(t) converge to zero in some sense?



The Luenberger Observer

System: ẋ = Ax

y = Cx

Observer: ˙̂x = (A− LC)x̂ + Ly

Error: ė = (A− LC)e

Recall our assumption that A− LC is Hurwitz (all eigenvalues
are in LHP). This implies that

‖x(t)− x̂(t)‖2 = ‖e(t)‖2 =

n∑

i=1

|ei(t)|2 t→∞−−−→ 0

at an exponential rate, determined by the eigenvalues of
A− LC.

For fast convergence, want eigenvalues of A− LC far into
LHP!!



Observability and Estimation Error

Fact: If the system

ẋ = Ax, y = Cx

is observable, then we can arbitrarily assign eigenvalues of
A− LC by a suitable choice of the output injection matrix L.

This is similar to the fact that controllability implies arbitrary
closed-loop pole placement by state feedback.

In fact, these two facts are closely related because CCF is dual
to OCF.



Combining Full-State Feedback with an Observer

I So far, we have focused on autonomous systems (u = 0).

I What about nonzero inputs?

ẋ = Ax + Bu

y = Cx

— assume (A,B) is controllable and (A,C) is observable.

I Today, we will learn how to use an observer together with
estimated state feedback to (approximately) place
closed-loop poles.
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Combining Full-State Feedback with an Observer

I Consider

ẋ = Ax + Bu

y = Cx

where (A,B) is controllable and (A,C) is observable.

I We know how to find K, such that A−BK has desired
eigenvalues (controller poles).

I Since we do not have access to x, we must design an
observer. But this time, we need a slight modification
because of the Bu term.



Observer in the Presence of Control Input
I Let’s see what goes wrong when we use the old approach:

˙̂x = (A− LC)x̂ + Ly

I For the estimation error e = x− x̂, we have

ė = ẋ− ˙̂x

= Ax + Bu− [(A− LC)x̂ + LCx]

= (A− LC)e + Bu – not good

I Idea: since u is a signal we can access, let’s use it as an
input to the observer to cancel the Bu term from ẋ.

I Modified observer:

˙̂x = (A− LC)x̂ + Ly + Bu

ė = ẋ− ˙̂x

= Ax + Bu− [(A− LC)x̂ + LCx + Bu]

= (A− LC)e regardless of u



Observer and Controller

System: ẋ = Ax + Bu

y = Cx

Observer: ˙̂x = (A− LC)x̂ + Ly + Bu

Error: ė = (A− LC)e

I By observability, we can arbitrarily assign eig(A− LC);
these should be farther into LHP than desired controller
poles.

Controller: u = −Kx̂ (estimated state feedback)

I By controllability, we can arbitrarily assign eig(A−BK).



Observer and Controller

System: ẋ = Ax + Bu

y = Cx

Observer: ˙̂x = (A− LC)x̂ + Ly + Bu

Controller: u = −Kx̂

The overall observer-controller system is:

˙̂x = (A− LC)x̂ + Ly + B (−Kx̂)︸ ︷︷ ︸
=u

= (A− LC −BK)x̂ + Ly

u = −Kx̂ (dynamic output feedback)

— this is a dynamical system with input y and output u



Dynamic Output Feedback

ẋ = Ax + Bu

y = Cx

˙̂x = (A− LC −BK)x̂ + Ly

u = −Kx̂
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Dynamic Output Feedback
˙̂x = (A− LC −BK)x̂ + Ly, u = −Kx̂

plant y

observer
bx

�K

u = �Kbx

B
controller

Controller transfer function (from y to u):

sX̂ = (A− LC −BK)X̂ + LY, U = −KX̂

U = −K(Is−A + LC + BK)−1L︸ ︷︷ ︸
=D(s)

Y



Dynamic Output Feedback: Does It Work?

Summarizing:

I When y = x, full state feedback u = −Kx achieves desired
pole placement.

I How do we know that u = −Kx̂ achieves similar objectives?

Here is our overall closed-loop system:

ẋ = Ax−BKx̂

˙̂x = (A− LC −BK)x̂ + LCx

We can write it in block matrix form:
(
ẋ
˙̂x

)
=

(
A −BK
LC A− LC −BK

)(
x
x̂

)

How do we relate this to “nominal” behavior, A−BK?



Dynamic Output Feedback

(
ẋ
˙̂x

)
=

(
A −BK
LC A− LC −BK

)(
x
x̂

)

Let us transform to new coordinates:(
x
x̂

)
7−→

(
x
e

)
=

(
x

x− x̂

)
=

(
I 0
I −I

)

︸ ︷︷ ︸
T

(
x
x̂

)

Two key observations:
I T is invertible, so the new representation is equivalent to

the old one
I in the new coordinates, we have

ẋ = Ax−BKx̂

= (A−BK)x + BK(x− x̂)

= (A−BK)x + BKe

ė = (A− LC)e



The Main Result: Separation Principle
So now we can write

(
ẋ
ė

)
=

(
A−BK BK

0 A− LC

)

︸ ︷︷ ︸
upper triangular matrix

(
x
e

)

The closed-loop characteristic polynomial is

det

(
Is−A + BK −BK

0 Is−A + LC

)

= det (Is−A + BK) · det (Is−A + LC)

Separation principle. The closed-loop eigenvalues are:

{controller poles (roots of det(Is−A + BK))}
∪ {observer poles (roots of det(Is−A + LC))}

— this holds only for linear systems!!



Separation Principle

Separation principle. The closed-loop eigenvalues are:

{controller poles (roots of det(Is−A + BK))}
∪ {observer poles (roots of det(Is−A + LC))}

— this holds only for linear systems!!

Moral of the story:

I If we choose observer poles to be several times faster than
the controller poles (e.g., 2–5 times), then the controller
poles will be dominant.

I Dynamic output feedback gives essentially the same
performance as (nonimplementable) full-state feedback —
provided observer poles are far enough into LHP.

I Remember: the system must be controllable and
observable!!


