Plan of the Lecture

- Review: control design using frequency response: PI/lead
- Today's topic: control design using frequency response: PD/lag, PID/lead+lag

Plan of the Lecture

- Review: control design using frequency response: PI/lead
- Today's topic: control design using frequency response: PD/lag, PID/lead+lag

Goal: understand the effect of various types of controllers ($\mathrm{PD} /$ lead, $\mathrm{PI} / \mathrm{lag}$) on the closed-loop performance by reading the open-loop Bode plot; develop frequency-response techniques for shaping transient and steady-state response using dynamic compensation

Plan of the Lecture

- Review: control design using frequency response: PI/lead
- Today's topic: control design using frequency response: PD/lag, PID/lead+lag

Goal: understand the effect of various types of controllers ($\mathrm{PD} /$ lead, $\mathrm{PI} / \mathrm{lag}$) on the closed-loop performance by reading the open-loop Bode plot; develop frequency-response techniques for shaping transient and steady-state response using dynamic compensation

Reading: FPE, Chapter 6

Review: Bode's Gain-Phase Relationship

Review: Bode's Gain-Phase Relationship

Assuming that $G(s)$ is minimum-phase (i.e., has no RHP zeros), we derived the following for the Bode plot of $K G(s)$:

Review: Bode's Gain-Phase Relationship

Assuming that $G(s)$ is minimum-phase (i.e., has no RHP zeros), we derived the following for the Bode plot of $K G(s)$:

	low freq.	real zero/pole	complex zero/pole
mag. slope	n	up/down by 1	up/down by 2
phase	$n \times 90^{\circ}$	up/down by 90°	up/down by 180°

Review: Bode's Gain-Phase Relationship

Assuming that $G(s)$ is minimum-phase (i.e., has no RHP zeros), we derived the following for the Bode plot of $K G(s)$:

	low freq.	real zero/pole	complex zero/pole
mag. slope	n	$\mathrm{up} /$ down by 1	up/down by 2
phase	$n \times 90^{\circ}$	up/down by 90°	up/down by 180°

We can state this succinctly as follows:
Gain-Phase Relationship. Far enough from break-points,
Phase \approx Magnitude Slope $\times 90^{\circ}$

Bode's Gain-Phase Relationship

Gain-Phase Relationship. Far enough from break-points, Phase \approx Magnitude Slope $\times 90^{\circ}$

Bode's Gain-Phase Relationship

Gain-Phase Relationship. Far enough from break-points,

$$
\text { Phase } \approx \text { Magnitude Slope } \times 90^{\circ}
$$

This suggests the following rule of thumb:

Bode's Gain-Phase Relationship

Gain-Phase Relationship. Far enough from break-points,

$$
\text { Phase } \approx \text { Magnitude Slope } \times 90^{\circ}
$$

This suggests the following rule of thumb:

Bode's Gain-Phase Relationship

Gain-Phase Relationship. Far enough from break-points,

$$
\text { Phase } \approx \text { Magnitude Slope } \times 90^{\circ}
$$

This suggests the following rule of thumb:

- M has slope -2 at ω_{c}

Bode's Gain-Phase Relationship

Gain-Phase Relationship. Far enough from break-points,

$$
\text { Phase } \approx \text { Magnitude Slope } \times 90^{\circ}
$$

This suggests the following rule of thumb:

- M has slope -2 at ω_{c} $\Rightarrow \phi\left(\omega_{c}\right)=-180^{\circ}$

Bode's Gain-Phase Relationship

Gain-Phase Relationship. Far enough from break-points,

$$
\text { Phase } \approx \text { Magnitude Slope } \times 90^{\circ}
$$

This suggests the following rule of thumb:

- M has slope -2 at ω_{c}
$\Rightarrow \phi\left(\omega_{c}\right)=-180^{\circ}$
$\Rightarrow \mathrm{bad}$ (no PM)

Bode's Gain-Phase Relationship

Gain-Phase Relationship. Far enough from break-points,

$$
\text { Phase } \approx \text { Magnitude Slope } \times 90^{\circ}
$$

This suggests the following rule of thumb:

- M has slope -2 at ω_{c}
$\Rightarrow \phi\left(\omega_{c}\right)=-180^{\circ}$
\Rightarrow bad (no PM)
- M has slope -1 at ω_{c}

Bode's Gain-Phase Relationship

Gain-Phase Relationship. Far enough from break-points,

$$
\text { Phase } \approx \text { Magnitude Slope } \times 90^{\circ}
$$

This suggests the following rule of thumb:

- M has slope -2 at ω_{c}
$\Rightarrow \phi\left(\omega_{c}\right)=-180^{\circ}$
\Rightarrow bad (no PM)
- M has slope -1 at ω_{c} $\Rightarrow \phi\left(\omega_{c}\right)=-90^{\circ}$

Bode's Gain-Phase Relationship

Gain-Phase Relationship. Far enough from break-points,

$$
\text { Phase } \approx \text { Magnitude Slope } \times 90^{\circ}
$$

This suggests the following rule of thumb:

- M has slope -2 at ω_{c} $\Rightarrow \phi\left(\omega_{c}\right)=-180^{\circ}$ \Rightarrow bad (no PM)
- M has slope -1 at ω_{c} $\Rightarrow \phi\left(\omega_{c}\right)=-90^{\circ}$ $\Rightarrow \operatorname{good}\left(\mathrm{PM}=90^{\circ}\right)$

Bode's Gain-Phase Relationship

Gain-Phase Relationship. Far enough from break-points,

$$
\text { Phase } \approx \text { Magnitude Slope } \times 90^{\circ}
$$

This suggests the following rule of thumb:

- M has slope -2 at ω_{c}
$\Rightarrow \phi\left(\omega_{c}\right)=-180^{\circ}$
$\Rightarrow \mathrm{bad}$ (no PM)
- M has slope -1 at ω_{c}
$\Rightarrow \phi\left(\omega_{c}\right)=-90^{\circ}$ $\Rightarrow \operatorname{good}\left(\mathrm{PM}=90^{\circ}\right)$
- this is an important design guideline!!

Bode's Gain-Phase Relationship

Gain-Phase Relationship. Far enough from break-points,
Phase \approx Magnitude Slope $\times 90^{\circ}$

This suggests the following rule of thumb:

- M has slope -2 at ω_{c} $\Rightarrow \phi\left(\omega_{c}\right)=-180^{\circ}$ $\Rightarrow \mathrm{bad}$ (no PM)
- M has slope -1 at ω_{c} $\Rightarrow \phi\left(\omega_{c}\right)=-90^{\circ}$ $\Rightarrow \operatorname{good}\left(\mathrm{PM}=90^{\circ}\right)$
- this is an important design guideline!!
(Similar considerations apply when M-plot has positive slope depends on the t.f.)

Control Design Using Frequency Response

Bode's Gain-Phase Relationship suggests that we can shape the time response of the closed-loop system by choosing K (or, more generally, a dynamic controller $K D(s)$) to tune the Phase Margin.

Control Design Using Frequency Response

Bode's Gain-Phase Relationship suggests that we can shape the time response of the closed-loop system by choosing K (or, more generally, a dynamic controller $K D(s)$) to tune the Phase Margin.

In particular, from the quantitative Gain-Phase Relationship,

$$
\text { Magnitude slope }\left(\omega_{c}\right)=-1 \quad \Longrightarrow \quad \operatorname{Phase}\left(\omega_{c}\right) \approx-90^{\circ}
$$

- which gives us PM of 90° and consequently good damping.

Lead Controller Design Using Frequency Response

General Procedure

Lead Controller Design Using Frequency Response

General Procedure

1. Choose K to get desired bandwidth spec w/o lead

Lead Controller Design Using Frequency Response

 General Procedure1. Choose K to get desired bandwidth spec w/o lead
2. Choose lead zero and pole to get desired PM

Lead Controller Design Using Frequency Response

General Procedure

1. Choose K to get desired bandwidth spec w/o lead
2. Choose lead zero and pole to get desired PM

- in general, we should first check PM with the K from 1, w/o lead, to see how much more PM we need

Lead Controller Design Using Frequency Response

General Procedure

1. Choose K to get desired bandwidth spec w/o lead
2. Choose lead zero and pole to get desired PM

- in general, we should first check PM with the K from 1, w/o lead, to see how much more PM we need

3. Check design and iterate until specs are met.

Lead Controller Design Using Frequency Response

General Procedure

1. Choose K to get desired bandwidth spec w/o lead
2. Choose lead zero and pole to get desired PM

- in general, we should first check PM with the K from 1, w/o lead, to see how much more PM we need

3. Check design and iterate until specs are met.

This is an intuitive procedure, but it's not very precise, requires trial \& error.

Lag Compensation: Bode Plot

$$
D(s)=\frac{s+z}{s+p}=\frac{z}{p} \frac{\frac{s}{z}+1}{\frac{s}{p}+1}, \quad z \gg p
$$

Lag Compensation: Bode Plot

$$
D(s)=\frac{s+z}{s+p}=\frac{z}{p} \frac{s}{z}+1, \quad z \gg p
$$

$-\frac{j \omega+z}{j \omega+p} \xrightarrow{\omega \rightarrow \infty} 1$
so $M \rightarrow 1$ at high frequencies

- subtracts phase, hence the term "phase lag"

Lag Compensation: Bode Plot

Lag Compensation: Bode Plot

$$
\frac{j \omega+z}{j \omega+p} \xrightarrow{\omega \rightarrow 0} \frac{z}{p}
$$

Lag Compensation: Bode Plot

$$
\frac{j \omega+z}{j \omega+p} \xrightarrow{\omega \rightarrow 0} \frac{z}{p}
$$

steady-state tracking error:

$$
e(\infty)=\left.\frac{s R(s)}{1+D(s) G(s)}\right|_{s=0}
$$

Lag Compensation: Bode Plot

$$
\frac{j \omega+z}{j \omega+p} \xrightarrow{\omega \rightarrow 0} \frac{z}{p}
$$

steady-state tracking error:

$$
e(\infty)=\left.\frac{s R(s)}{1+D(s) G(s)}\right|_{s=0}
$$

large $z / p \Longrightarrow$ better s.s. tracking

Lag Compensation: Bode Plot

$-\frac{j \omega+z}{j \omega+p} \xrightarrow{\omega \rightarrow 0} \frac{z}{p}$

steady-state tracking error:

$$
e(\infty)=\left.\frac{s R(s)}{1+D(s) G(s)}\right|_{s=0}
$$

large $z / p \Longrightarrow$ better s.s. tracking

- lag decreases $\omega_{c} \Longrightarrow$ slows down time response (to compensate, adjust K or add lead)

Lag Compensation: Bode Plot

$-\frac{j \omega+z}{j \omega+p} \xrightarrow{\omega \rightarrow 0} \frac{z}{p}$

steady-state tracking error:

$$
e(\infty)=\left.\frac{s R(s)}{1+D(s) G(s)}\right|_{s=0}
$$

large $z / p \Longrightarrow$ better s.s. tracking

- lag decreases $\omega_{c} \Longrightarrow$ slows down time response (to compensate, adjust K or add lead)
- caution: lead increases PM, but adding lag can undo this

Lag Compensation: Bode Plot

$-\frac{j \omega+z}{j \omega+p} \xrightarrow{\omega \rightarrow 0} \frac{z}{p}$

steady-state tracking error:

$$
e(\infty)=\left.\frac{s R(s)}{1+D(s) G(s)}\right|_{s=0}
$$

large $z / p \Longrightarrow$ better s.s. tracking

- lag decreases $\omega_{c} \Longrightarrow$ slows down time response (to compensate, adjust K or add lead)
- caution: lead increases PM, but adding lag can undo this
- to mitigate this, choose both z and p very small, while maintaining desired ratio z / p

Example

$$
G(s)=\frac{1}{(s+0.2)(s+0.5)} \stackrel{\substack{\text { Bode } \\ \text { form }}}{=} \frac{10}{\left(\frac{s}{0.2}+1\right)\left(\frac{s}{0.5}+1\right)}
$$

Example

$$
G(s)=\frac{1}{(s+0.2)(s+0.5)} \stackrel{\substack{\text { Bode } \\ \text { form }}}{=} \frac{10}{\left(\frac{s}{0.2}+1\right)\left(\frac{s}{0.5}+1\right)}
$$

Objectives:

Example

$$
G(s)=\frac{1}{(s+0.2)(s+0.5)} \stackrel{\substack{\text { Bode } \\ \text { form }}}{=} \frac{10}{\left(\frac{s}{0.2}+1\right)\left(\frac{s}{0.5}+1\right)}
$$

Objectives:

- $\mathrm{PM} \geq 60^{\circ}$

Example

$$
G(s)=\frac{1}{(s+0.2)(s+0.5)} \stackrel{\substack{\text { Bode } \\ \text { form }}}{=} \frac{10}{\left(\frac{s}{0.2}+1\right)\left(\frac{s}{0.5}+1\right)}
$$

Objectives:

- $\mathrm{PM} \geq 60^{\circ}$
- $e(\infty) \leq 10 \%$ for constant reference (closed-loop tracking error)

Example

$$
G(s)=\frac{1}{(s+0.2)(s+0.5)} \stackrel{\substack{\text { Bode } \\ \text { form }}}{=} \frac{10}{\left(\frac{s}{0.2}+1\right)\left(\frac{s}{0.5}+1\right)}
$$

Objectives:

- $\mathrm{PM} \geq 60^{\circ}$
- $e(\infty) \leq 10 \%$ for constant reference (closed-loop tracking error)
Strategy:

Example

$$
G(s)=\frac{1}{(s+0.2)(s+0.5)} \stackrel{\substack{\text { Bode } \\ \text { form }}}{=} \frac{10}{\left(\frac{s}{0.2}+1\right)\left(\frac{s}{0.5}+1\right)}
$$

Objectives:

- $\mathrm{PM} \geq 60^{\circ}$
- $e(\infty) \leq 10 \%$ for constant reference (closed-loop tracking error)

Strategy:

- we will use lag

$$
K D(s)=K \frac{s+z}{s+p}, \quad z \gg p
$$

Example

$$
G(s)=\frac{1}{(s+0.2)(s+0.5)} \stackrel{\substack{\text { Bode } \\ \text { form }}}{=} \frac{10}{\left(\frac{s}{0.2}+1\right)\left(\frac{s}{0.5}+1\right)}
$$

Objectives:

- $\mathrm{PM} \geq 60^{\circ}$
- $e(\infty) \leq 10 \%$ for constant reference (closed-loop tracking error)

Strategy:

- we will use lag

$$
K D(s)=K \frac{s+z}{s+p}, \quad z \gg p
$$

- z and p will be chosen to get good tracking

Example

$$
G(s)=\frac{1}{(s+0.2)(s+0.5)} \stackrel{\substack{\text { Bode } \\ \text { form }}}{=} \frac{10}{\left(\frac{s}{0.2}+1\right)\left(\frac{s}{0.5}+1\right)}
$$

Objectives:

- $\mathrm{PM} \geq 60^{\circ}$
- $e(\infty) \leq 10 \%$ for constant reference (closed-loop tracking error)

Strategy:

- we will use lag

$$
K D(s)=K \frac{s+z}{s+p}, \quad z \gg p
$$

- z and p will be chosen to get good tracking
- PM will be shaped by choosing K

Example

$$
G(s)=\frac{1}{(s+0.2)(s+0.5)} \stackrel{\substack{\text { Bode } \\ \text { form }}}{=} \frac{10}{\left(\frac{s}{0.2}+1\right)\left(\frac{s}{0.5}+1\right)}
$$

Objectives:

- $\mathrm{PM} \geq 60^{\circ}$
- $e(\infty) \leq 10 \%$ for constant reference (closed-loop tracking error)

Strategy:

- we will use lag

$$
K D(s)=K \frac{s+z}{s+p}, \quad z \gg p
$$

- z and p will be chosen to get good tracking
- PM will be shaped by choosing K
- this is different from what we did for lead (used p and z to shape PM, then chose K to get desired bandwidth spec)

Step 1: Choose K to Shape PM

Check Bode plot of $G(s)$ to see how much PM it already has:

Step 1: Choose K to Shape PM

Check Bode plot of $G(s)$ to see how much PM it already has:

- from Matlab, $\omega_{c} \approx 1$

Step 1: Choose K to Shape PM

Check Bode plot of $G(s)$ to see how much PM it already has:

- from Matlab, $\omega_{c} \approx 1$
- $\mathrm{PM} \approx 40^{\circ}$

Step 1: Choose K to Shape PM

Check Bode plot of $G(s)$ to see how much PM it already has:

- from Matlab, $\omega_{c} \approx 1$
- $\mathrm{PM} \approx 40^{\circ}$
- we want $\mathrm{PM}=60^{\circ}$

Step 1: Choose K to Shape PM

Check Bode plot of $G(s)$ to see how much PM it already has:

- from Matlab, $\omega_{c} \approx 1$
- $\mathrm{PM} \approx 40^{\circ}$
- we want $\mathrm{PM}=60^{\circ}$

$$
\begin{array}{cl}
\phi=-120^{\circ} & \text { at } \omega \approx 0.573 \\
& M=2.16
\end{array}
$$

Step 1: Choose K to Shape PM

Check Bode plot of $G(s)$ to see how much PM it already has:

- from Matlab, $\omega_{c} \approx 1$
- $\mathrm{PM} \approx 40^{\circ}$
- we want $\mathrm{PM}=60^{\circ}$

$$
\begin{array}{cl}
\phi=-120^{\circ} & \text { at } \omega \approx 0.573 \\
& M=2.16
\end{array}
$$

— need to decrease K to $1 / 2.16$

Step 1: Choose K to Shape PM

Check Bode plot of $G(s)$ to see how much PM it already has:

- from Matlab, $\omega_{c} \approx 1$
- $\mathrm{PM} \approx 40^{\circ}$
- we want $\mathrm{PM}=60^{\circ}$

$$
\begin{array}{cl}
\phi=-120^{\circ} & \text { at } \omega \approx 0.573 \\
& M=2.16
\end{array}
$$

- need to decrease K to $1 / 2.16$

A conservative choice (to allow some slack) is $K=1 / 2.5=0.4$, gives $\omega_{c} \approx 0.52, \mathrm{PM} \approx 65^{\circ}$

Step 2: Choose $z \& p$ to Shape Tracking Error

$$
\text { So far: } K G(s)=\frac{0.4 \cdot 10}{\left(\frac{s}{0.2}+1\right)\left(\frac{s}{0.5}+1\right)}
$$

Step 2: Choose $z \& p$ to Shape Tracking Error
So far: $K G(s)=\frac{0.4 \cdot 10}{\left(\frac{s}{0.2}+1\right)\left(\frac{s}{0.5}+1\right)}$

$$
e(\infty)=\left.\frac{1}{1+K G(s)}\right|_{s=0}=\frac{1}{1+4}=\frac{1}{5}=20 \% \quad(\text { too high })
$$

Step 2: Choose $z \& p$ to Shape Tracking Error

So far: $K G(s)=\frac{0.4 \cdot 10}{\left(\frac{s}{0.2}+1\right)\left(\frac{s}{0.5}+1\right)}$

$$
e(\infty)=\left.\frac{1}{1+K G(s)}\right|_{s=0}=\frac{1}{1+4}=\frac{1}{5}=20 \% \quad(\text { too high })
$$

To have $e(\infty) \leq 10 \%$, need $K D(0) G(0) \geq 9$:

Step 2: Choose $z \& p$ to Shape Tracking Error

So far: $K G(s)=\frac{0.4 \cdot 10}{\left(\frac{s}{0.2}+1\right)\left(\frac{s}{0.5}+1\right)}$

$$
e(\infty)=\left.\frac{1}{1+K G(s)}\right|_{s=0}=\frac{1}{1+4}=\frac{1}{5}=20 \% \quad(\text { too high })
$$

To have $e(\infty) \leq 10 \%$, need $K D(0) G(0) \geq 9$:

$$
e(\infty)=\frac{1}{1+K D(0) G(0)} \leq \frac{1}{1+9}=10 \% .
$$

Step 2: Choose $z \& p$ to Shape Tracking Error

So far: $K G(s)=\frac{0.4 \cdot 10}{\left(\frac{s}{0.2}+1\right)\left(\frac{s}{0.5}+1\right)}$

$$
e(\infty)=\left.\frac{1}{1+K G(s)}\right|_{s=0}=\frac{1}{1+4}=\frac{1}{5}=20 \% \quad(\text { too high })
$$

To have $e(\infty) \leq 10 \%$, need $K D(0) G(0) \geq 9$:

$$
e(\infty)=\frac{1}{1+K D(0) G(0)} \leq \frac{1}{1+9}=10 \%
$$

So, we need

$$
D(0)=\left.\frac{s+z}{s+p}\right|_{s=0}=\frac{z}{p} \geq \frac{9}{4}=2.25 \quad-\text { say }, z / p=2.5
$$

Step 2: Choose $z \& p$ to Shape Tracking Error

So far: $K G(s)=\frac{0.4 \cdot 10}{\left(\frac{s}{0.2}+1\right)\left(\frac{s}{0.5}+1\right)}$

$$
e(\infty)=\left.\frac{1}{1+K G(s)}\right|_{s=0}=\frac{1}{1+4}=\frac{1}{5}=20 \% \quad(\text { too high })
$$

To have $e(\infty) \leq 10 \%$, need $K D(0) G(0) \geq 9$:

$$
e(\infty)=\frac{1}{1+K D(0) G(0)} \leq \frac{1}{1+9}=10 \% .
$$

So, we need

$$
D(0)=\left.\frac{s+z}{s+p}\right|_{s=0}=\frac{z}{p} \geq \frac{9}{4}=2.25 \quad-\text { say, } z / p=2.5
$$

Not to distort PM and ω_{c}, let's pick z and p an order of magnitude smaller than $\omega_{c} \approx 0.5: z=0.05, p=0.02$

Overall Design

- the design still needs a bit of refinement ...

Lead \& Lag Compensation

Let's combine the advantages of PD/lead and PI/lag.
Back to our example: $\quad G(s)=\frac{10}{\left(\frac{s}{0.2}+1\right)\left(\frac{s}{0.5}+1\right)}$

- from Matlab, $\omega_{c} \approx 1$
- $\mathrm{PM} \approx 40^{\circ}$

Lead \& Lag Compensation

Let's combine the advantages of $\mathrm{PD} /$ lead and $\mathrm{PI} /$ lag.
Back to our example: $\quad G(s)=\frac{10}{\left(\frac{s}{0.2}+1\right)\left(\frac{s}{0.5}+1\right)}$

- from Matlab, $\omega_{c} \approx 1$
- $\mathrm{PM} \approx 40^{\circ}$

New objectives:

- $\omega_{\mathrm{BW}} \geq 2$
- $\mathrm{PM} \geq 60^{\circ}$
- $e(\infty) \leq 1 \%$ for const. ref.

Lead \& Lag Compensation

What we got before, with lag only:

- Improved PM by adjusting K to decrease ω_{c}.
- This gave $\omega_{c} \approx 0.5$, whereas now we want a larger ω_{c} (recall: $\omega_{\mathrm{BW}} \in\left[\omega_{c}, 2 \omega_{c}\right]$, so $\omega_{c}=0.5$ is too small)

So: we need to reshape the phase curve using lead.

Lead \& Lag Compensation

Step 1. Choose K to get $\omega_{c} \approx 2$ (before lead)

Lead \& Lag Compensation

Step 1. Choose K to get $\omega_{c} \approx 2$
(before lead)
Using Matlab, can check:

Lead \& Lag Compensation

Step 1. Choose K to get $\omega_{c} \approx 2$ (before lead)

Using Matlab, can check:
at $\omega=2, \quad M \approx 0.24($ with $K=1)$

Lead \& Lag Compensation

Step 1. Choose K to get $\omega_{c} \approx 2$ (before lead)

Using Matlab, can check:
at $\omega=2, \quad M \approx 0.24($ with $K=1)$

- need $K=\frac{1}{0.24} \approx 4.1667$

Lead \& Lag Compensation

Step 1. Choose K to get $\omega_{c} \approx 2$
(before lead)
Using Matlab, can check:
at $\omega=2, \quad M \approx 0.24($ with $K=1)$

- need $K=\frac{1}{0.24} \approx 4.1667$
— choose $K=4$
(gives ω_{c} slightly <2, but still ok).

Lead \& Lag Compensation

$$
K=4
$$

Step 2. Decide how much phase lead is needed, and choose $z_{\text {lead }}$ and $p_{\text {lead }}$

Lead \& Lag Compensation

$$
K=4
$$

Step 2. Decide how much phase lead is needed, and choose $z_{\text {lead }}$ and $p_{\text {lead }}$

Using Matlab, can check:

Lead \& Lag Compensation

$$
K=4
$$

Step 2. Decide how much phase lead is needed, and choose $z_{\text {lead }}$ and $p_{\text {lead }}$

Using Matlab, can check:

$$
\text { at } \omega=2, \quad \phi \approx-160^{\circ}
$$

Lead \& Lag Compensation

$$
K=4
$$

Step 2. Decide how much phase lead is needed, and choose $z_{\text {lead }}$ and $p_{\text {lead }}$

Using Matlab, can check:

$$
\begin{aligned}
& \text { at } \omega=2, \quad \phi \approx-160^{\circ} \\
& \text { - so } \mathrm{PM}=20^{\circ}
\end{aligned}
$$

Lead \& Lag Compensation

$$
K=4
$$

Step 2. Decide how much phase lead is needed, and choose $z_{\text {lead }}$ and $p_{\text {lead }}$

Using Matlab, can check:

$$
\text { at } \omega=2, \quad \phi \approx-160^{\circ}
$$

- so $\mathrm{PM}=20^{\circ}$
(in fact, choosing $K=4$ made things worse: it increased ω_{c} and consequently decreased PM)

Lead \& Lag Compensation

$$
K=4
$$

Step 2. Decide how much phase lead is needed, and choose $z_{\text {lead }}$ and $p_{\text {lead }}$

Using Matlab, can check:

$$
\text { at } \omega=2, \quad \phi \approx-160^{\circ}
$$

- so $\mathrm{PM}=20^{\circ}$
(in fact, choosing $K=4$ made things worse: it increased ω_{c} and consequently decreased PM)

We need at least 40° phase lead!!

Lead \& Lag Compensation

$$
K=4
$$

Step 2. Decide how much phase lead is needed, and choose $z_{\text {lead }}$ and $p_{\text {lead }}$

Using Matlab, can check:

$$
\text { at } \omega=2, \quad \phi \approx-160^{\circ}
$$

- so $\mathrm{PM}=20^{\circ}$
(in fact, choosing $K=4$ made things worse: it increased ω_{c} and consequently decreased PM)

We need at least 40° phase lead!! The choice of lead pole/zero must satisfy

$$
\sqrt{z_{\text {lead }} \cdot p_{\text {lead }}} \approx 2 \Longrightarrow z_{\text {lead }} \cdot p_{\text {lead }}=4
$$

Lead \& Lag Compensation

Need at least 40° phase lead, while satisfying

$$
\sqrt{z_{\text {lead }} \cdot p_{\text {lead }}} \approx 2 \Longrightarrow z_{\text {lead }} \cdot p_{\text {lead }}=4
$$

Lead \& Lag Compensation

Need at least 40° phase lead, while satisfying

$$
\sqrt{z_{\text {lead }} \cdot p_{\text {lead }}} \approx 2 \Longrightarrow z_{\text {lead }} \cdot p_{\text {lead }}=4
$$

Let's try $z_{\text {lead }}=1$ and $p_{\text {lead }}=4$

$$
D(s)=\frac{s+1}{\frac{s}{4}+1}
$$

Lead \& Lag Compensation

Need at least 40° phase lead, while satisfying

$$
\sqrt{z_{\text {lead }} \cdot p_{\text {lead }}} \approx 2 \Longrightarrow z_{\text {lead }} \cdot p_{\text {lead }}=4
$$

Let's try $z_{\text {lead }}=1$ and $p_{\text {lead }}=4$

$$
D(s)=\frac{s+1}{\frac{s}{4}+1}
$$

Phase lead $=37^{\circ} \quad$ - not enough!!

Lead \& Lag Compensation

Need at least 40° phase lead, while satisfying

$$
\sqrt{z_{\text {lead }} \cdot p_{\text {lead }}} \approx 2 \Longrightarrow z_{\text {lead }} \cdot p_{\text {lead }}=4
$$

Lead \& Lag Compensation

Need at least 40° phase lead, while satisfying

$$
\sqrt{z_{\text {lead }} \cdot p_{\text {lead }}} \approx 2 \Longrightarrow z_{\text {lead }} \cdot p_{\text {lead }}=4
$$

The choice of $z_{\text {lead }}=1, p_{\text {lead }}=4$ gave phase lead $=37^{\circ}$.

Lead \& Lag Compensation

Need at least 40° phase lead, while satisfying

$$
\sqrt{z_{\text {lead }} \cdot p_{\text {lead }}} \approx 2 \Longrightarrow z_{\text {lead }} \cdot p_{\text {lead }}=4
$$

The choice of $z_{\text {lead }}=1, p_{\text {lead }}=4$ gave phase lead $=37^{\circ}$.
Need to space $z_{\text {lead }}$ and $p_{\text {lead }}$ farther apart:

Lead \& Lag Compensation

Need at least 40° phase lead, while satisfying

$$
\sqrt{z_{\text {lead }} \cdot p_{\text {lead }}} \approx 2 \Longrightarrow z_{\text {lead }} \cdot p_{\text {lead }}=4
$$

The choice of $z_{\text {lead }}=1, p_{\text {lead }}=4$ gave phase lead $=37^{\circ}$.
Need to space $z_{\text {lead }}$ and $p_{\text {lead }}$ farther apart:

$$
\left\{\begin{array}{l}
z_{\text {lead }}=0.8 \\
p_{\text {lead }}=5
\end{array} \quad \Longrightarrow \quad \text { phase lead }=46^{\circ}\right.
$$

Lead \& Lag Compensation

Step 3. Evaluate steady-state tracking and choose $z_{\text {lag }}, p_{\text {lag }}$ to satisfy specs

Lead \& Lag Compensation

Step 3. Evaluate steady-state tracking and choose $z_{\text {lag }}, p_{\text {lag }}$ to satisfy specs

So far:

$$
\begin{aligned}
& K \underbrace{D(s)}_{\substack{\text { lead } \\
\text { only }}} G(s)=4 \frac{\frac{s}{0.8}+1}{\frac{s}{5}+1} \cdot \frac{10}{\left(\frac{s}{0.2}+1\right)\left(\frac{s}{0.5}+1\right)} \\
& K D(0) G(0)=40 \quad \Longrightarrow \quad e(\infty)=\frac{1}{1+K D(0) G(0)}=\frac{1}{1+40}
\end{aligned}
$$

Lead \& Lag Compensation

Step 3. Evaluate steady-state tracking and choose $z_{\text {lag }}, p_{\text {lag }}$ to satisfy specs

So far:

$$
\begin{aligned}
& K \underbrace{D(s)}_{\substack{\text { lead } \\
\text { only }}} G(s)=4 \frac{\frac{s}{0.8}+1}{\frac{s}{5}+1} \cdot \frac{10}{\left(\frac{s}{0.2}+1\right)\left(\frac{s}{0.5}+1\right)} \\
& K D(0) G(0)=40 \quad \Longrightarrow \quad e(\infty)=\frac{1}{1+K D(0) G(0)}=\frac{1}{1+40}
\end{aligned}
$$

- this is not small enough: need $1 \%=\frac{1}{100}=\frac{1}{1+99}$

Lead \& Lag Compensation

Step 3. Evaluate steady-state tracking and choose $z_{\text {lag }}, p_{\text {lag }}$ to satisfy specs

So far:

$$
\begin{aligned}
& K \underbrace{D(s)}_{\substack{\text { lead } \\
\text { only }}} G(s)=4 \frac{\frac{s}{0.8}+1}{\frac{s}{5}+1} \cdot \frac{10}{\left(\frac{s}{0.2}+1\right)\left(\frac{s}{0.5}+1\right)} \\
& K D(0) G(0)=40 \quad \Longrightarrow \quad e(\infty)=\frac{1}{1+K D(0) G(0)}=\frac{1}{1+40}
\end{aligned}
$$

- this is not small enough: need $1 \%=\frac{1}{100}=\frac{1}{1+99}$

We want $D(0) \geq \frac{99}{40}$ with lag $\quad \frac{z_{\text {lag }}}{p_{\text {lag }}} \approx 2.5$ will do

Lead \& Lag Compensation

Need to choose lag pole/zero that are sufficiently small (not to distort the phase lead too much) and satisfy $\frac{z_{\text {lag }}}{p_{\text {lag }}} \approx 2.5$.

Lead \& Lag Compensation

Need to choose lag pole/zero that are sufficiently small (not to distort the phase lead too much) and satisfy $\frac{z_{\text {lag }}}{p_{\text {lag }}} \approx 2.5$.
We can stick with our previous design:

$$
z_{\mathrm{lag}}=0.05, \quad p_{\mathrm{lag}}=0.02
$$

Lead \& Lag Compensation

Need to choose lag pole/zero that are sufficiently small (not to distort the phase lead too much) and satisfy $\frac{z_{\text {lag }}}{p_{\text {lag }}} \approx 2.5$.
We can stick with our previous design:

$$
z_{\mathrm{lag}}=0.05, \quad p_{\mathrm{lag}}=0.02
$$

Overall controller:

(Note: we don't rewrite lag in Bode form, because $z_{\text {lag }} / p_{\text {lag }}$ is not incorporated into K.)

Frequency Domain Design Method: Advantages

Design based on Bode plots is good for:

Frequency Domain Design Method: Advantages

Design based on Bode plots is good for:

- easily visualizing the concepts

Frequency Domain Design Method: Advantages

Design based on Bode plots is good for:

- easily visualizing the concepts

Frequency Domain Design Method: Advantages

Design based on Bode plots is good for:

- easily visualizing the concepts

- evaluating the design and seeing which way to change it

Frequency Domain Design Method: Advantages

Design based on Bode plots is good for:

- easily visualizing the concepts

- evaluating the design and seeing which way to change it
- using experimental data (frequency response of the uncontrolled system can be measured experimentally)

Frequency Domain Design Method: Disadvantages

Design based on Bode plots is not good for:

Frequency Domain Design Method: Disadvantages

Design based on Bode plots is not good for:

- exact closed-loop pole placement (root locus is more suitable for that)

Frequency Domain Design Method: Disadvantages

Design based on Bode plots is not good for:

- exact closed-loop pole placement (root locus is more suitable for that)
- deciding if a given K is stabilizing or not ...

Frequency Domain Design Method: Disadvantages

Design based on Bode plots is not good for:

- exact closed-loop pole placement (root locus is more suitable for that)
- deciding if a given K is stabilizing or not ...
- we can only measure how far we are from instability (using GM or PM), if we know that we are stable

Frequency Domain Design Method: Disadvantages

Design based on Bode plots is not good for:

- exact closed-loop pole placement (root locus is more suitable for that)
- deciding if a given K is stabilizing or not ...
- we can only measure how far we are from instability (using GM or PM), if we know that we are stable
- however, we don't have a way of checking whether a given K is stabilizing from frequency response data

Frequency Domain Design Method: Disadvantages

Design based on Bode plots is not good for:

- exact closed-loop pole placement (root locus is more suitable for that)
- deciding if a given K is stabilizing or not ...
- we can only measure how far we are from instability (using GM or PM), if we know that we are stable
- however, we don't have a way of checking whether a given K is stabilizing from frequency response data

What we want is a frequency-domain substitute for the
Routh-Hurwitz criterion - this is the Nyquist criterion, which we will discuss in the next lecture.

