Plan of the Lecture

- Review: stability from frequency response
- Today's topic: control design using frequency response

Plan of the Lecture

- Review: stability from frequency response
- Today's topic: control design using frequency response

Goal: understand the effect of various types of controllers ($\mathrm{PD} /$ lead, $\mathrm{PI} / \mathrm{lag}$) on the closed-loop performance by reading the open-loop Bode plot; develop frequency-response techniques for shaping transient and steady-state response using dynamic compensation

Plan of the Lecture

- Review: stability from frequency response
- Today's topic: control design using frequency response

Goal: understand the effect of various types of controllers ($\mathrm{PD} /$ lead, $\mathrm{PI} / \mathrm{lag}$) on the closed-loop performance by reading the open-loop Bode plot; develop frequency-response techniques for shaping transient and steady-state response using dynamic compensation

Reading: FPE, Chapter 6

Review: Phase Margin for 2nd-Order System

$$
\begin{aligned}
G(s)= & \frac{\omega_{n}^{2}}{s^{2}+2 \zeta \omega_{n} s}, \quad \quad \text { closed-loop t.f. }
\end{aligned}=\frac{\omega_{n}^{2}}{s^{2}+2 \zeta \omega_{n} s+\omega_{n}^{2}}
$$

Review: Phase Margin for 2nd-Order System

$$
\begin{aligned}
G(s)= & \frac{\omega_{n}^{2}}{s^{2}+2 \zeta \omega_{n} s}, \quad \quad \text { closed-loop t.f. }=\frac{\omega_{n}^{2}}{s^{2}+2 \zeta \omega_{n} s+\omega_{n}^{2}} \\
& \left.\mathrm{PM}\right|_{K=1}=\tan ^{-1}\left(\frac{2 \zeta}{\sqrt{4 \zeta^{4}+1}-2 \zeta^{2}}\right) \approx 100 \cdot \zeta
\end{aligned}
$$

Conclusions:

$$
\begin{array}{rlr}
\text { larger } \mathrm{PM} & \Longleftrightarrow & \text { better damping } \\
\text { (open-loop quantity) }
\end{array}
$$

Review: Phase Margin for 2nd-Order System

$$
\begin{aligned}
& G(s)=\frac{\omega_{n}^{2}}{s^{2}+2 \zeta \omega_{n} s}, \quad \quad \text { closed-loop t.f. }=\frac{\omega_{n}^{2}}{s^{2}+2 \zeta \omega_{n} s+\omega_{n}^{2}} \\
& \left.\mathrm{PM}\right|_{K=1}=\tan ^{-1}\left(\frac{2 \zeta}{\sqrt{4 \zeta^{4}+1}-2 \zeta^{2}}\right) \approx 100 \cdot \zeta
\end{aligned}
$$

Conclusions:

$$
\begin{array}{rlr}
\text { larger } \mathrm{PM} & \Longleftrightarrow & \text { better damping } \\
\text { (open-loop quantity) }
\end{array}
$$

Thus, the overshoot $M_{p}=\exp \left(-\frac{\pi \zeta}{\sqrt{1-\zeta^{2}}}\right)$ and resonant peak $M_{r}=\frac{1}{2 \zeta \sqrt{1-\zeta^{2}}}-1$ are both related to PM through $\zeta!!$

Bode's Gain-Phase Relationship

Bode's Gain-Phase Relationship

Assuming that $G(s)$ is minimum-phase (i.e., has no RHP zeros), we derived the following for the Bode plot of $K G(s)$:

Bode's Gain-Phase Relationship

Assuming that $G(s)$ is minimum-phase (i.e., has no RHP zeros), we derived the following for the Bode plot of $K G(s)$:

	low freq.	real zero/pole	complex zero/pole
mag. slope	n	up/down by 1	up/down by 2
phase	$n \times 90^{\circ}$	up/down by 90°	up/down by 180°

Bode's Gain-Phase Relationship

Assuming that $G(s)$ is minimum-phase (i.e., has no RHP zeros), we derived the following for the Bode plot of $K G(s)$:

	low freq.	real zero/pole	complex zero/pole
mag. slope	n	up/down by 1	up/down by 2
phase	$n \times 90^{\circ}$	up/down by 90°	up/down by 180°

We can state this succinctly as follows:
Gain-Phase Relationship. Far enough from break-points,
Phase \approx Magnitude Slope $\times 90^{\circ}$

Bode's Gain-Phase Relationship

Gain-Phase Relationship. Far enough from break-points, Phase \approx Magnitude Slope $\times 90^{\circ}$

Bode's Gain-Phase Relationship

Gain-Phase Relationship. Far enough from break-points,

$$
\text { Phase } \approx \text { Magnitude Slope } \times 90^{\circ}
$$

This suggests the following rule of thumb:

Bode's Gain-Phase Relationship

Gain-Phase Relationship. Far enough from break-points,

$$
\text { Phase } \approx \text { Magnitude Slope } \times 90^{\circ}
$$

This suggests the following rule of thumb:

Bode's Gain-Phase Relationship

Gain-Phase Relationship. Far enough from break-points,

$$
\text { Phase } \approx \text { Magnitude Slope } \times 90^{\circ}
$$

This suggests the following rule of thumb:

- M has slope -2 at ω_{c}

Bode's Gain-Phase Relationship

Gain-Phase Relationship. Far enough from break-points,

$$
\text { Phase } \approx \text { Magnitude Slope } \times 90^{\circ}
$$

This suggests the following rule of thumb:

- M has slope -2 at ω_{c} $\Rightarrow \phi\left(\omega_{c}\right)=-180^{\circ}$

Bode's Gain-Phase Relationship

Gain-Phase Relationship. Far enough from break-points,

$$
\text { Phase } \approx \text { Magnitude Slope } \times 90^{\circ}
$$

This suggests the following rule of thumb:

- M has slope -2 at ω_{c}
$\Rightarrow \phi\left(\omega_{c}\right)=-180^{\circ}$
$\Rightarrow \mathrm{bad}$ (no PM)

Bode's Gain-Phase Relationship

Gain-Phase Relationship. Far enough from break-points,

$$
\text { Phase } \approx \text { Magnitude Slope } \times 90^{\circ}
$$

This suggests the following rule of thumb:

- M has slope -2 at ω_{c}
$\Rightarrow \phi\left(\omega_{c}\right)=-180^{\circ}$
\Rightarrow bad (no PM)
- M has slope -1 at ω_{c}

Bode's Gain-Phase Relationship

Gain-Phase Relationship. Far enough from break-points,

$$
\text { Phase } \approx \text { Magnitude Slope } \times 90^{\circ}
$$

This suggests the following rule of thumb:

- M has slope -2 at ω_{c}
$\Rightarrow \phi\left(\omega_{c}\right)=-180^{\circ}$
\Rightarrow bad (no PM)
- M has slope -1 at ω_{c} $\Rightarrow \phi\left(\omega_{c}\right)=-90^{\circ}$

Bode's Gain-Phase Relationship

Gain-Phase Relationship. Far enough from break-points,

$$
\text { Phase } \approx \text { Magnitude Slope } \times 90^{\circ}
$$

This suggests the following rule of thumb:

- M has slope -2 at ω_{c} $\Rightarrow \phi\left(\omega_{c}\right)=-180^{\circ}$ \Rightarrow bad (no PM)
- M has slope -1 at ω_{c} $\Rightarrow \phi\left(\omega_{c}\right)=-90^{\circ}$ $\Rightarrow \operatorname{good}\left(\mathrm{PM}=90^{\circ}\right)$

Bode's Gain-Phase Relationship

Gain-Phase Relationship. Far enough from break-points,

$$
\text { Phase } \approx \text { Magnitude Slope } \times 90^{\circ}
$$

This suggests the following rule of thumb:

- M has slope -2 at ω_{c}
$\Rightarrow \phi\left(\omega_{c}\right)=-180^{\circ}$
$\Rightarrow \mathrm{bad}$ (no PM)
- M has slope -1 at ω_{c}
$\Rightarrow \phi\left(\omega_{c}\right)=-90^{\circ}$ $\Rightarrow \operatorname{good}\left(\mathrm{PM}=90^{\circ}\right)$
- this is an important design guideline!!

Bode's Gain-Phase Relationship

Gain-Phase Relationship. Far enough from break-points,
Phase \approx Magnitude Slope $\times 90^{\circ}$

This suggests the following rule of thumb:

- M has slope -2 at ω_{c} $\Rightarrow \phi\left(\omega_{c}\right)=-180^{\circ}$ $\Rightarrow \mathrm{bad}$ (no PM)
- M has slope -1 at ω_{c} $\Rightarrow \phi\left(\omega_{c}\right)=-90^{\circ}$ $\Rightarrow \operatorname{good}\left(\mathrm{PM}=90^{\circ}\right)$
- this is an important design guideline!!
(Similar considerations apply when M-plot has positive slope depends on the t.f.)

Gain-Phase Relationship \& Bandwidth

Gain-Phase Relationship \& Bandwidth

M-plot for open-loop t.f. $K G$:

Gain-Phase Relationship \& Bandwidth

M-plot for open-loop t.f. $K G$:

Note: $|K G(j \omega)| \rightarrow \infty$ as $\omega \rightarrow 0$

Gain-Phase Relationship \& Bandwidth

$$
\left\{\begin{array}{l}
\left|K G\left(j \omega_{c}\right)\right|=1 \\
\angle G\left(j \omega_{c}\right)=-90^{\circ}
\end{array} \quad \Rightarrow K G\left(j \omega_{c}\right)=-j\right.
$$

M-plot for open-loop t.f. $K G$:

Note: $|K G(j \omega)| \rightarrow \infty$ as $\omega \rightarrow 0$

Gain-Phase Relationship \& Bandwidth

$$
\left\{\begin{array}{l}
\left|K G\left(j \omega_{c}\right)\right|=1 \\
\angle G\left(j \omega_{c}\right)=-90^{\circ}
\end{array} \quad \Rightarrow K G\left(j \omega_{c}\right)=-j\right.
$$

M-plot for open-loop t.f. $K G$:

Note: $|K G(j \omega)| \rightarrow \infty$ as $\omega \rightarrow 0$

Closed-loop t.f.:

$$
\begin{aligned}
T\left(j \omega_{c}\right) & =\frac{K G\left(j \omega_{c}\right)}{1+K G\left(j \omega_{c}\right)}=\frac{-j}{1-j} \\
\left|T\left(j \omega_{c}\right)\right| & =\left|\frac{-j}{1-j}\right|=\frac{1}{\sqrt{2}} \\
|T(0)| & =\lim _{\omega \rightarrow 0} \frac{|K G(j \omega)|}{|1+K G(j \omega)|}=1 \\
& \Longrightarrow \omega_{c}=\omega_{\mathrm{BW}}(\text { bandwidth })
\end{aligned}
$$

Gain-Phase Relationship \& Bandwidth

$$
\left\{\begin{array}{l}
\left|K G\left(j \omega_{c}\right)\right|=1 \\
\angle G\left(j \omega_{c}\right)=-90^{\circ}
\end{array} \quad \Rightarrow K G\left(j \omega_{c}\right)=-j\right.
$$

M-plot for open-loop t.f. $K G$:
Closed-loop t.f.:

Note: $|K G(j \omega)| \rightarrow \infty$ as $\omega \rightarrow 0$

$$
\begin{aligned}
T\left(j \omega_{c}\right) & =\frac{K G\left(j \omega_{c}\right)}{1+K G\left(j \omega_{c}\right)}=\frac{-j}{1-j} \\
\left|T\left(j \omega_{c}\right)\right| & =\left|\frac{-j}{1-j}\right|=\frac{1}{\sqrt{2}} \\
|T(0)| & =\lim _{\omega \rightarrow 0} \frac{|K G(j \omega)|}{|1+K G(j \omega)|}=1 \\
& \Longrightarrow \omega_{c}=\omega_{\mathrm{BW}} \text { (bandwidth) }
\end{aligned}
$$

- If $\mathrm{PM}=90^{\circ}$, then $\omega_{c}=\omega_{\mathrm{BW}}$

Gain-Phase Relationship \& Bandwidth

M-plot for open-loop t.f. $K G$:
Closed-loop t.f.:
Closed-loop t.f.:

Note: $|K G(j \omega)| \rightarrow \infty$ as $\omega \rightarrow 0$

$$
\left\{\begin{array}{l}
\left|K G\left(j \omega_{c}\right)\right|=1 \\
\angle G\left(j \omega_{c}\right)=-90^{\circ}
\end{array} \quad \Rightarrow K G\left(j \omega_{c}\right)=-j\right.
$$

$$
\begin{aligned}
T\left(j \omega_{c}\right) & =\frac{K G\left(j \omega_{c}\right)}{1+K G\left(j \omega_{c}\right)}=\frac{-j}{1-j} \\
\left|T\left(j \omega_{c}\right)\right| & =\left|\frac{-j}{1-j}\right|=\frac{1}{\sqrt{2}} \\
|T(0)| & =\lim _{\omega \rightarrow 0} \frac{|K G(j \omega)|}{|1+K G(j \omega)|}=1 \\
& \Longrightarrow \omega_{c}=\omega_{\mathrm{BW}} \text { (bandwidth) }
\end{aligned}
$$

- If $\mathrm{PM}=90^{\circ}$, then $\omega_{c}=\omega_{\mathrm{BW}}$
- If $P M<90^{\circ}$, then $\omega_{c} \leq \omega_{\mathrm{BW}} \leq 2 \omega_{c}$ (see FPE)

Control Design Using Frequency Response

Bode's Gain-Phase Relationship suggests that we can shape the time response of the closed-loop system by choosing K (or, more generally, a dynamic controller $K D(s)$) to tune the Phase Margin.

Control Design Using Frequency Response

Bode's Gain-Phase Relationship suggests that we can shape the time response of the closed-loop system by choosing K (or, more generally, a dynamic controller $K D(s)$) to tune the Phase Margin.

In particular, from the quantitative Gain-Phase Relationship,

$$
\text { Magnitude slope }\left(\omega_{c}\right)=-1 \quad \Longrightarrow \quad \operatorname{Phase}\left(\omega_{c}\right) \approx-90^{\circ}
$$

- which gives us PM of 90° and consequently good damping.

Example

$$
\text { Let } G(s)=\frac{1}{s^{2}}
$$

(double integrator)

Example

$$
\text { Let } G(s)=\frac{1}{s^{2}}
$$

(double integrator)
Objective: design a controller $K D(s)(K=$ scalar gain $)$ to give

Example

$$
\text { Let } G(s)=\frac{1}{s^{2}}
$$

(double integrator)
Objective: design a controller $K D(s)(K=$ scalar gain $)$ to give

- stability

Example

$$
\text { Let } G(s)=\frac{1}{s^{2}} \quad \text { (double integrator) }
$$

Objective: design a controller $K D(s)(K=$ scalar gain $)$ to give

- stability
- good damping (will make this more precise in a bit)

Example

$$
\text { Let } G(s)=\frac{1}{s^{2}}
$$

(double integrator)
Objective: design a controller $K D(s)(K=$ scalar gain $)$ to give

- stability
- good damping (will make this more precise in a bit)
- $\omega_{\mathrm{BW}} \approx 0.5$ (always a closed-loop characteristic)

Example

$$
\text { Let } G(s)=\frac{1}{s^{2}}
$$

(double integrator)
Objective: design a controller $K D(s)(K=$ scalar gain $)$ to give

- stability
- good damping (will make this more precise in a bit)
- $\omega_{\mathrm{BW}} \approx 0.5$ (always a closed-loop characteristic)

Strategy:

Example

$$
\text { Let } G(s)=\frac{1}{s^{2}} \quad \text { (double integrator) }
$$

Objective: design a controller $K D(s)(K=$ scalar gain $)$ to give

- stability
- good damping (will make this more precise in a bit)
- $\omega_{\mathrm{BW}} \approx 0.5$ (always a closed-loop characteristic)

Strategy:

- from Bode's Gain-Phase Relationship, we want magnitude slope $=-1$ at $\omega_{c} \Longrightarrow \mathrm{PM}=90^{\circ} \Longrightarrow$ good damping;

Example

$$
\text { Let } G(s)=\frac{1}{s^{2}} \quad \text { (double integrator) }
$$

Objective: design a controller $K D(s)(K=$ scalar gain $)$ to give

- stability
- good damping (will make this more precise in a bit)
- $\omega_{\mathrm{BW}} \approx 0.5$ (always a closed-loop characteristic)

Strategy:

- from Bode's Gain-Phase Relationship, we want magnitude slope $=-1$ at $\omega_{c} \Longrightarrow \mathrm{PM}=90^{\circ} \Longrightarrow$ good damping;
- if $\mathrm{PM}=90^{\circ}$, then $\omega_{c}=\omega_{\mathrm{BW}} \Longrightarrow$ want $\omega_{c} \approx 0.5$

Design, First Attempt

$$
G(s)=\frac{1}{s^{2}}
$$

Design, First Attempt

$$
G(s)=\frac{1}{s^{2}}
$$

Let's try proportional feedback:

$$
D(s)=1 \Longrightarrow K D(s) G(s)=K G(s)=\frac{K}{s^{2}}
$$

Design, First Attempt

$$
G(s)=\frac{1}{s^{2}}
$$

Let's try proportional feedback:

$$
D(s)=1 \Longrightarrow K D(s) G(s)=K G(s)=\frac{K}{s^{2}}
$$

Design, First Attempt

$$
G(s)=\frac{1}{s^{2}}
$$

Let's try proportional feedback:

$$
D(s)=1 \Longrightarrow K D(s) G(s)=K G(s)=\frac{K}{s^{2}}
$$

This is not a good idea: slope $=-2$ everywhere, so no PM.

Design, First Attempt

$$
G(s)=\frac{1}{s^{2}}
$$

Let's try proportional feedback:

$$
D(s)=1 \Longrightarrow K D(s) G(s)=K G(s)=\frac{K}{s^{2}}
$$

This is not a good idea: slope $=-2$ everywhere, so no PM.

We already know that P-gain alone won't do the job:

$$
K+s^{2}=0 \text { (imag. poles) }
$$

Design, Second Attempt

Design, Second Attempt

Let's try proportional-derivative feedback:

$$
K D(s)=K(\tau s+1), \quad \text { where } K=K_{\mathrm{P}}, K \tau=K_{\mathrm{D}}
$$

Design, Second Attempt

Let's try proportional-derivative feedback:

$$
K D(s)=K(\tau s+1), \quad \text { where } K=K_{\mathrm{P}}, K \tau=K_{\mathrm{D}}
$$

Open-loop transfer function: $K D(s) G(s)=\frac{K(\tau s+1)}{s^{2}}$.

Design, Second Attempt

Let's try proportional-derivative feedback:

$$
K D(s)=K(\tau s+1), \quad \text { where } K=K_{\mathrm{P}}, K \tau=K_{\mathrm{D}}
$$

Open-loop transfer function: $K D(s) G(s)=\frac{K(\tau s+1)}{s^{2}}$.
Bode plot interpretation: PD controller introduces a Type 2 term in the numerator, which pushes the slope up by 1

Design, Second Attempt

Let's try proportional-derivative feedback:

$$
K D(s)=K(\tau s+1), \quad \text { where } K=K_{\mathrm{P}}, K \tau=K_{\mathrm{D}}
$$

Open-loop transfer function: $K D(s) G(s)=\frac{K(\tau s+1)}{s^{2}}$.
Bode plot interpretation: PD controller introduces a Type 2 term in the numerator, which pushes the slope up by 1

- this has the effect of pushing the M-slope of $K D(s) G(s)$ from -2 to -1 past the break-point $(\omega=1 / \tau)$.

Design, Second Attempt (PD-Control)

Open-loop transfer function: $K D(s) G(s)=\frac{K(\tau s+1)}{s^{2}}$

Design, Second Attempt (PD-Control)

$$
\text { Open-loop transfer function: } K D(s) G(s)=\frac{K(\tau s+1)}{s^{2}}
$$

For the G-P relationship to be valid, choose the break-point several times smaller than desired ω_{c} :

Design, Second Attempt (PD-Control)

Open-loop transfer function: $K D(s) G(s)=\frac{K(\tau s+1)}{s^{2}}$

For the G-P relationship to be valid, choose the break-point several times smaller than desired ω_{c} :
\Longrightarrow let's take $\tau=10$

Design, Second Attempt (PD-Control)

Open-loop transfer function: $K D(s) G(s)=\frac{K(\tau s+1)}{s^{2}}$

For the G-P relationship to be valid, choose the break-point several times smaller than desired ω_{c} :
\Longrightarrow let's take $\tau=10$
$\Longrightarrow \frac{1}{\tau}=0.1=\frac{\omega_{c}}{5}$

Design, Second Attempt (PD-Control)

Open-loop transfer function: $K D(s) G(s)=\frac{K(\tau s+1)}{s^{2}}$

For the G-P relationship to be valid, choose the break-point several times smaller than desired ω_{c} :
\Longrightarrow let's take $\tau=10$
$\Longrightarrow \frac{1}{\tau}=0.1=\frac{\omega_{c}}{5}$
Open-loop t.f.:
$K D(s) G(s)=\frac{K(10 s+1)}{s^{2}}$

Design, Second Attempt (PD-Control)

Open-loop transfer function: $K D(s) G(s)=\frac{K(10 s+1)}{s^{2}}$

- Want $\omega_{c} \approx 0.5$

Design, Second Attempt (PD-Control)

Open-loop transfer function: $K D(s) G(s)=\frac{K(10 s+1)}{s^{2}}$

- Want $\omega_{c} \approx 0.5$
- This means that

$$
\begin{aligned}
& M(j 0.5)=1 \\
&|K D(j 0.5) G(j .05)| \\
&=\frac{K|5 j+1|}{0.5^{2}} \\
&= 4 K \sqrt{26} \approx 20 K \\
& \Longrightarrow K=\frac{1}{20}
\end{aligned}
$$

PD Control Design: Evaluation

Initial design: $K D(s)=\frac{10 s+1}{20}$

$$
G(s)=\frac{1}{s^{2}}
$$

PD Control Design: Evaluation

Initial design: $K D(s)=\frac{10 s+1}{20}$

$$
G(s)=\frac{1}{s^{2}}
$$

What have we accomplished?

PD Control Design: Evaluation

Initial design: $K D(s)=\frac{10 s+1}{20}$

$$
G(s)=\frac{1}{s^{2}}
$$

What have we accomplished?

- $\mathrm{PM} \approx 90^{\circ}$ at $\omega_{c}=0.5$

PD Control Design: Evaluation

Initial design: $K D(s)=\frac{10 s+1}{20}$

$$
G(s)=\frac{1}{s^{2}}
$$

What have we accomplished?

- $\mathrm{PM} \approx 90^{\circ}$ at $\omega_{c}=0.5$
- still need to check in Matlab and iterate if necessary

PD Control Design: Evaluation

Initial design: $K D(s)=\frac{10 s+1}{20}$

$$
G(s)=\frac{1}{s^{2}}
$$

What have we accomplished?

- $\mathrm{PM} \approx 90^{\circ}$ at $\omega_{c}=0.5$
- still need to check in Matlab and iterate if necessary

Trade-offs:

PD Control Design: Evaluation

Initial design: $K D(s)=\frac{10 s+1}{20}$

$$
G(s)=\frac{1}{s^{2}}
$$

What have we accomplished?

- $\mathrm{PM} \approx 90^{\circ}$ at $\omega_{c}=0.5$
- still need to check in Matlab and iterate if necessary

Trade-offs:

- want ω_{BW} to be large enough for fast response (larger $\omega_{\mathrm{BW}} \longrightarrow$ larger $\omega_{n} \longrightarrow$ smaller t_{r}), but not too large to avoid noise amplification at high frequencies

PD Control Design: Evaluation

Initial design: $K D(s)=\frac{10 s+1}{20}$

$$
G(s)=\frac{1}{s^{2}}
$$

What have we accomplished?

- $\mathrm{PM} \approx 90^{\circ}$ at $\omega_{c}=0.5$
- still need to check in Matlab and iterate if necessary

Trade-offs:

- want ω_{BW} to be large enough for fast response (larger $\omega_{\mathrm{BW}} \longrightarrow$ larger $\omega_{n} \longrightarrow$ smaller t_{r}), but not too large to avoid noise amplification at high frequencies
- PD control increases slope \longrightarrow increases $\omega_{c} \longrightarrow$ increases $\omega_{\mathrm{BW}} \longrightarrow$ faster response

PD Control Design: Evaluation

Initial design: $K D(s)=\frac{10 s+1}{20}$

$$
G(s)=\frac{1}{s^{2}}
$$

What have we accomplished?

- $\mathrm{PM} \approx 90^{\circ}$ at $\omega_{c}=0.5$
- still need to check in Matlab and iterate if necessary

Trade-offs:

- want ω_{BW} to be large enough for fast response (larger $\omega_{\mathrm{BW}} \longrightarrow$ larger $\omega_{n} \longrightarrow$ smaller t_{r}), but not too large to avoid noise amplification at high frequencies
- PD control increases slope \longrightarrow increases $\omega_{c} \longrightarrow$ increases $\omega_{\mathrm{BW}} \longrightarrow$ faster response
- usual complaint: D-gain is not physically realizable, so let's try lead compensation

Lead Compensation: Bode Plot

$$
K D(s)=K \frac{s+z}{s+p}, \quad p \gg z
$$

Lead Compensation: Bode Plot

$$
K D(s)=K \frac{s+z}{s+p}, \quad p \gg z
$$

In Bode form:

$$
K D(s)=\frac{K z\left(\frac{s}{z}+1\right)}{p\left(\frac{s}{p}+1\right)}
$$

Lead Compensation: Bode Plot

$$
K D(s)=K \frac{s+z}{s+p}, \quad p \gg z
$$

In Bode form:

$$
K D(s)=\frac{K z\left(\frac{s}{z}+1\right)}{p\left(\frac{s}{p}+1\right)}
$$

or, absorbing z / p into the overall gain, we have

$$
K D(s)=\frac{K\left(\frac{s}{z}+1\right)}{\left(\frac{s}{p}+1\right)}
$$

Lead Compensation: Bode Plot

$$
K D(s)=K \frac{s+z}{s+p}, \quad p \gg z
$$

In Bode form:

$$
K D(s)=\frac{K z\left(\frac{s}{z}+1\right)}{p\left(\frac{s}{p}+1\right)}
$$

or, absorbing z / p into the overall gain, we have

$$
K D(s)=\frac{K\left(\frac{s}{z}+1\right)}{\left(\frac{s}{p}+1\right)}
$$

Break-points:

Lead Compensation: Bode Plot

$$
K D(s)=K \frac{s+z}{s+p}, \quad p \gg z
$$

In Bode form:

$$
K D(s)=\frac{K z\left(\frac{s}{z}+1\right)}{p\left(\frac{s}{p}+1\right)}
$$

or, absorbing z / p into the overall gain, we have

$$
K D(s)=\frac{K\left(\frac{s}{z}+1\right)}{\left(\frac{s}{p}+1\right)}
$$

Break-points:

- Type 1 zero with break-point at $\omega=z$ (comes first, $z \ll p$)

Lead Compensation: Bode Plot

$$
K D(s)=K \frac{s+z}{s+p}, \quad p \gg z
$$

In Bode form:

$$
K D(s)=\frac{K z\left(\frac{s}{z}+1\right)}{p\left(\frac{s}{p}+1\right)}
$$

or, absorbing z / p into the overall gain, we have

$$
K D(s)=\frac{K\left(\frac{s}{z}+1\right)}{\left(\frac{s}{p}+1\right)}
$$

Break-points:

- Type 1 zero with break-point at $\omega=z$ (comes first, $z \ll p$)
- Type 1 pole with break-point at $\omega=p$

Lead Compensation: Bode Plot

$$
K D(s)=\frac{K\left(\frac{s}{z}+1\right)}{\left(\frac{s}{p}+1\right)}
$$

- magnitude levels off at high frequencies \Longrightarrow better noise suppression
- adds phase, hence the term "phase lead"

Lead Compensation and Phase Margin

$$
K D(s)=\frac{K\left(\frac{s}{z}+1\right)}{\left(\frac{s}{p}+1\right)}
$$

For best effect on PM, ω_{c} should be halfway between z and p (on log scale):

Lead Compensation and Phase Margin

$$
K D(s)=\frac{K\left(\frac{s}{z}+1\right)}{\left(\frac{s}{p}+1\right)}
$$

For best effect on PM, ω_{c} should be halfway between z and p (on log scale):

$$
\begin{aligned}
\log \omega_{c} & =\frac{\log z+\log p}{2} \\
\text { or } \omega_{c} & =\sqrt{z \cdot p}
\end{aligned}
$$

Lead Compensation and Phase Margin

$$
K D(s)=\frac{K\left(\frac{s}{z}+1\right)}{\left(\frac{s}{p}+1\right)}
$$

For best effect on PM, ω_{c} should be halfway between z and p (on log scale):

$$
\begin{aligned}
\log \omega_{c} & =\frac{\log z+\log p}{2} \\
\text { or } \omega_{c} & =\sqrt{z \cdot p}
\end{aligned}
$$

- geometric mean of z and p

Lead Compensation and Phase Margin

$$
K D(s)=\frac{K\left(\frac{s}{z}+1\right)}{\left(\frac{s}{p}+1\right)}
$$

For best effect on PM, ω_{c} should be halfway between z and p (on log scale):

$$
\begin{aligned}
\log \omega_{c} & =\frac{\log z+\log p}{2} \\
\text { or } \omega_{c} & =\sqrt{z \cdot p}
\end{aligned}
$$

- geometric mean of z and p

Trade-offs: large $p-z$ means

Lead Compensation and Phase Margin

$$
K D(s)=\frac{K\left(\frac{s}{z}+1\right)}{\left(\frac{s}{p}+1\right)}
$$

For best effect on PM, ω_{c} should be halfway between z and p (on log scale):

$$
\begin{aligned}
\log \omega_{c} & =\frac{\log z+\log p}{2} \\
\text { or } \omega_{c} & =\sqrt{z \cdot p}
\end{aligned}
$$

- geometric mean of z and p

Trade-offs: large $p-z$ means

- large PM (closer to 90°)

Lead Compensation and Phase Margin

$$
K D(s)=\frac{K\left(\frac{s}{z}+1\right)}{\left(\frac{s}{p}+1\right)}
$$

For best effect on PM, ω_{c} should be halfway between z and p (on log scale):

$$
\begin{aligned}
\log \omega_{c} & =\frac{\log z+\log p}{2} \\
\text { or } \omega_{c} & =\sqrt{z \cdot p}
\end{aligned}
$$

- geometric mean of z and p

Trade-offs: large $p-z$ means

- large PM (closer to 90°)
- but also bigger M at higher frequencies (worse noise suppression)

Back to Our Example: $G(s)=\frac{1}{s^{2}}$

Back to Our Example: $G(s)=\frac{1}{s^{2}}$
Objectives (same as before):

- stability
- good damping
- $\omega_{\text {BW }}$ close to 0.5

Back to Our Example: $G(s)=\frac{1}{s^{2}}$
Objectives (same as before):

- stability
- good damping
- $\omega_{\text {BW }}$ close to 0.5

$$
K G(s)=\frac{K}{s^{2}}(\mathrm{w} / \mathrm{o} \text { lead }):
$$

after adding lead:

$$
\frac{K}{(0.5)^{2}}=1 \Longrightarrow K=\frac{1}{4}
$$

- adding lead will increase $\omega_{c}!!$

Back to Our Example: $G(s)=\frac{1}{s^{2}}$
After adding lead with $K=1 / 4$, what do we see?

Back to Our Example: $G(s)=\frac{1}{s^{2}}$
After adding lead with $K=1 / 4$, what do we see?

- adding lead increases ω_{c}

Back to Our Example: $G(s)=\frac{1}{s^{2}}$
After adding lead with $K=1 / 4$, what do we see?

- adding lead increases ω_{c}
- $\Longrightarrow \mathrm{PM}<90^{\circ}$

Back to Our Example: $G(s)=\frac{1}{s^{2}}$
After adding lead with $K=1 / 4$, what do we see?

- adding lead increases ω_{c}
- $\Longrightarrow \mathrm{PM}<90^{\circ}$
$-\Longrightarrow \omega_{\mathrm{BW}}$ may be $>\omega_{c}$

Back to Our Example: $G(s)=\frac{1}{s^{2}}$
After adding lead with $K=1 / 4$, what do we see?

- adding lead increases ω_{c}
- $\Longrightarrow \mathrm{PM}<90^{\circ}$
- $\Longrightarrow \omega_{\mathrm{BW}}$ may be $>\omega_{c}$

To be on the safe side, we choose a new value of K so that

$$
\omega_{c}=\frac{\omega_{\mathrm{BW}}}{2}
$$

Back to Our Example: $G(s)=\frac{1}{s^{2}}$
After adding lead with $K=1 / 4$, what do we see?

- adding lead increases ω_{c}
- $\Longrightarrow \mathrm{PM}<90^{\circ}$
- $\Longrightarrow \omega_{\mathrm{BW}}$ may be $>\omega_{c}$

To be on the safe side, we choose a new value of K so that

$$
\omega_{c}=\frac{\omega_{\mathrm{BW}}}{2}
$$

(b/c generally $\omega_{c} \leq \omega_{\mathrm{BW}} \leq 2 \omega_{c}$)

Back to Our Example: $G(s)=\frac{1}{s^{2}}$
After adding lead with $K=1 / 4$, what do we see?

- adding lead increases ω_{c}
- $\Longrightarrow \mathrm{PM}<90^{\circ}$
$-\Longrightarrow \omega_{\mathrm{BW}}$ may be $>\omega_{c}$
To be on the safe side, we choose a new value of K so that

$$
\omega_{c}=\frac{\omega_{\mathrm{BW}}}{2}
$$

(b/c generally $\omega_{c} \leq \omega_{\mathrm{BW}} \leq 2 \omega_{c}$)

Thus, we want

$$
\omega_{c}=0.25 \Longrightarrow K=\frac{1}{16}
$$

Back to Our Example: $G(s)=\frac{1}{s^{2}}$
Next, we pick z and p so that ω_{c} is approximately their geometric mean:

$$
\begin{aligned}
& \text { e.g., } z=0.1, p=2 \\
& \quad \sqrt{z \cdot p}=\sqrt{0.2} \approx 0.447
\end{aligned}
$$

Back to Our Example: $G(s)=\frac{1}{s^{2}}$
Next, we pick z and p so that ω_{c} is approximately their geometric mean:

$$
\begin{aligned}
& \text { e.g., } z=0.1, p=2 \\
& \quad \sqrt{z \cdot p}=\sqrt{0.2} \approx 0.447
\end{aligned}
$$

Resulting lead controller:

$$
K D(s)=\frac{1}{16} \frac{\frac{s}{0.1}+1}{\frac{s}{2}+1}
$$

Back to Our Example: $G(s)=\frac{1}{s^{2}}$
Next, we pick z and p so that ω_{c} is approximately their geometric mean:

$$
\begin{aligned}
& \text { e.g., } z=0.1, p=2 \\
& \quad \sqrt{z \cdot p}=\sqrt{0.2} \approx 0.447
\end{aligned}
$$

Resulting lead controller:

$$
K D(s)=\frac{1}{16} \frac{\frac{s}{0.1}+1}{\frac{s}{2}+1}
$$

(may still need to be refined using Matlab)

Lead Controller Design Using Frequency Response

General Procedure

Lead Controller Design Using Frequency Response

General Procedure

1. Choose K to get desired bandwidth spec w/o lead

Lead Controller Design Using Frequency Response

 General Procedure1. Choose K to get desired bandwidth spec w/o lead
2. Choose lead zero and pole to get desired PM

Lead Controller Design Using Frequency Response

General Procedure

1. Choose K to get desired bandwidth spec w/o lead
2. Choose lead zero and pole to get desired PM

- in general, we should first check PM with the K from 1, w/o lead, to see how much more PM we need

Lead Controller Design Using Frequency Response

General Procedure

1. Choose K to get desired bandwidth spec w/o lead
2. Choose lead zero and pole to get desired PM

- in general, we should first check PM with the K from 1, w/o lead, to see how much more PM we need

3. Check design and iterate until specs are met.

Lead Controller Design Using Frequency Response

General Procedure

1. Choose K to get desired bandwidth spec w/o lead
2. Choose lead zero and pole to get desired PM

- in general, we should first check PM with the K from 1, w/o lead, to see how much more PM we need

3. Check design and iterate until specs are met.

This is an intuitive procedure, but it's not very precise, requires trial \& error.

