
Plan of the Lecture

I Review: design using Root Locus; dynamic compensation;
PD and lead control

I Today’s topic: PI and lag control; introduction to
frequency-response design method

Goal: wrap up lead and lag control; start looking at frequency
response as an alternative methodology for control systems
design.

Reading: FPE, Sections 5.1–5.4, 6.1
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Recap: Lead & Lag Compensators
Consider a general controller of the form

K
s+ z

s+ p
— K, z, p > 0 are design parameters

Depending on the relative values of z and p, we call it:

I a lead compensator when z < p

I a lag compensator when z > p

Why the name “lead/lag?” — think frequency response

∠
jω + z

jω + p
= ∠(jω + z)− ∠(jω + p) = ψ − φ

I if z < p, then ψ − φ > 0
(phase lead)

I if z > p, then ψ − φ < 0
(phase lag) z p

!
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Approximate PI via Dynamic Compensation

PI control achieves the objective of stabilization and perfect
steady-state tracking of constant references; however, just as
with PD earlier, we want a stable controller.

Here’s an idea:

replace K
s+ 1

s
by K

s+ 1

s+ p
, where p is small

More generally, if z = KI/KP, then

replace K
s+ z

s
by K

s+ z

s+ p
, where p < z

This is lag compensation (or lag control)!

We use lag controllers as dynamic compensators for
approximate PI control.
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Approximate PI via Lag Compensation

Gc(s) = K
s+ z

s+ p
, p < z Gp(s) =

1

s− 1

How good is this controller?

Tracking a constant reference: assuming closed-loop stability,
the FVT gives

e(∞) =
1

1 +Gc(s)Gp(s)

∣∣∣
s=0

=
1

1 +K s+z
(s+p)(s−1)

∣∣∣
s=0

=
1

1− Kz
p

Check for stability: no RHP poles for
1

1 +Gc(s)Gp(s)

(s+ p)(s− 1) +K(s+ z) = 0

s2 + (K + p− 1)s+Kz − p = 0

Conditions for stability: K > 1− p, Kz > p
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Approximate PI via Lag Compensation

Tracking a constant reference: if the stability conditions

K > 1− p, Kz > p

are satisfied, then the steady-state error is

e(∞) =
1

1− Kz
p

— this will be close to zero (and negative) if
Kz

p
is large.

Lag compensation does not give perfect tracking (indeed, it
does not change system type), but we can get as good a
tracking as we want by playing with K, z, p. On the other
hand, unlike PI, lag compensation gives a stable controller.
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Effect of Lag Compensation on Root Locus

L(s) =
s+ 1

(s+ p)(s− 1)

Intuition: By choosing p very close to zero, we can make the
root locus arbitrarily close to PI root locus (stable for large
enough K). Let’s check:

Try p = 0.1

-3 -2 -1 1

-1.0

-0.5

0.5

1.0

Compare to PI root locus:

-3 -2 -1 1

-1.0

-0.5

0.5

1.0

What do we see? Compared to PD vs. lead, there is no
qualitative change in the shape of RL, since we are not
changing #(poles) or #(zeros).
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More Pole Placement

As before, we can choose zlag for a fixed plag (or vice versa)
based on desired pole locations.

The procedure is exactly the same as the one we used with lead.
(In fact, depending on the pole locations, we may end up with
either lead or lag.)

Main technique: select parameters to satisfy the phase
condition (points on RL must be such that ∠L(s) = 180◦).

Caveat: may not always be possible!
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Pole Placement via RL

Let Gp(s) =
1

s− 1
, Gc(s) = K

s+ z

s+ p

Problem: given p = 2, find K and z to place poles at −2± 3j.

Desired characteristic polynomial:

(s+ 2)2 + 9 = s2 + 4s+ 13,

damping ratio ζ =
2√
13
≈ 0.555

xo Re

Im

0
x

s – given

� z

(to be

selected)

�2

3

 '1 = 135�'2 = 90�

Must have

ψ︸︷︷︸
angle from
s to zero

−
∑
i

ϕi︸︷︷︸
angles from
s to poles

= 180◦

So, we want ψ = 180◦ +
∑
i

ϕi
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3
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= 45◦ mod 360◦

Thus, we should
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� z = �5 �2

3

 = 45�
'1 = 135�'2 = 90�
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Let Gp(s) =
1

s− 1
, Gc(s) = K

s+ z

s+ p

Problem: given p = 2, find z to place poles at −2± 3j.

Solution:

I we already found that we need z = 5

I resulting characteristic polynomial:

(s− 1)(s+ p) +K(s+ z)

s2 + (K + 1)s+ 5K − 2

I compare against desired characteristic polynomial:

s2 + 4s+ 13 =⇒ K + 1 = 4, 5K − 2 = 13

so we need K = 3

I compute s.s. tracking error:

∣∣∣∣∣ 1

1− Kz
p

∣∣∣∣∣ =
1

6.5
≈ 15%
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Story So Far

PD control:

I provides stability, allows to shape transient response specs

I replace noncausal D-controller Ks with a causal, stable

lead controller K
s+ z

s+ p
, where p > z

I this introduces a zero in LHP (at −z), pulls the root locus
into LHP

I shape of RL differs depending on how large p is

PI control:

I provides stability and perfect steady-state tracking of
constant references

I replace unstable I-controller K/s with a stable lag

controller K
s+ z

s+ p
, where p < z

I this does not change the shape of RL compared to PI
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What About PID Control?

Obvious solution — combine lead and lag compensation.

We will develop this further in homework and later in the
course using frequency-response design methods — which are
the subject of several lectures, starting with today’s.



The Frequency-Response Design Method
Recall the frequency-response formula:

sin(!t) M sin(!t + �)G(s)

where M = M(ω) = |G(jω)| and φ = φ(ω) = ∠G(jω)

Derivation:

1. u(t) = est 7−→ y(t) = G(s)est

2. Euler’s formula: sin(ωt) =
ejωt − e−jωt

2j
3. By linearity,

sin(ωt) 7−→ G(jω)ejωt −G(−jω)e−jωt

2j

G(jω) = M(ω)ejφ(ω)

=
M(ω)ej(ωt+φ(ω)) −M(ω)e−j(ωt+φ(ω))

2j

= M(ω) sin(ωt+ φ(ω))
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The Frequency-Response Design Method

sin(!t) M sin(!t + �)G(s)

where M = M(ω) = |G(jω)| and φ = φ(ω) = ∠G(jω)

Let’s apply this formula to our prototype 2nd-order system:

G(s) =
ω2
n

s2 + 2ζωns+ ω2
n

M(ω) = |G(jω)| =
∣∣∣∣ ω2

n

−ω2 + 2jζωnω + ω2
n

∣∣∣∣
=

∣∣∣∣∣ 1

1−
(
ω
ωn

)2
+ 2ζ ω

ωn
j

∣∣∣∣∣
=

1√[
1−

(
ω
ωn

)2]2
+ 4ζ2

(
ω
ωn

)2
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sin(!t) M sin(!t + �)G(s)

where M = M(ω) = |G(jω)| and φ = φ(ω) = ∠G(jω)

Let’s apply this formula to our prototype 2nd-order system:
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The Frequency-Response Design Method
For our prototype 2nd-order system:

G(s) =
ω2
n

s2 + 2ζωns+ ω2
n

M(ω) =
1√[

1−
(
ω
ωn

)2]2
+ 4ζ2

(
ω
ωn

)2 =
1√

1 + (4ζ2 − 2)
(
ω
ωn

)2
+
(
ω
ωn

)4

z=1ê2
z=1ê 2

z=1

0.5 1.0 1.5 2.0 2.5 3.0
w
wn

0.2

0.4

0.6

0.8

1.0

M HwL



Frequency Response Parameters
Here is a typical frequency response magnitude plot:
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ωr – resonant frequency

Mr – resonant peak

ωBW – bandwidth



Frequency Response Parameters
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We can get the following formulas using calculus:ωr = ωn
√

1− 2ζ2

Mr =
1

2ζ
√

1− ζ2
− 1

(valid for ζ <
1√
2

; for ζ ≥ 1√
2

, ωr = 0)

ωBW = ωn

√
(1− 2ζ2) +

√
(1− 2ζ2)2 + 1︸ ︷︷ ︸

=1 for ζ=1/
√
2

— so, if we know ωr,Mr, ωBW, we can determine ωn, ζ and
hence the time-domain specs (tr,Mp, ts)



Frequency Response & Time-Domain Specs

All information about time response is also encoded in
frequency response!!
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small Mr ←→ better damping

large ωBW ←→ large ωn ←→ smaller tr



Frequency-Response Design Method: Main Idea

G(s) Y
+
�R K

Two-step procedure:

1. Plot the frequency response of the open-loop transfer
function KG(s) [or, more generally, D(s)G(s)], at s = jω

2. See how to relate this open-loop frequency response to
closed-loop behavior.

We will work with two types of plots for KG(jω):

1. Bode plots: magnitude |KG(jω)| and phase ∠KG(jω) vs.
frequency ω (could have seen it earlier, in ECE 342)

2. Nyquist plots: Im
(
KG(jω)

)
vs. Re

(
K(jω)

)
[Cartesian plot

in s-plane] as ω ranges from −∞ to +∞
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Note on the Scale

Horizontal (ω) axis:

we will use logarithmic scale (base 10) in order to
display a wide range of frequencies.

Note: we will still mark the values of ω, not log10 ω, on the
axis, but the scale will be logarithmic:

1 10 100 10000.10.01... ...
!

Equal intervals on log scale correspond to decades in frequency.



Note on the Scale

Vertical axis on magnitude plots:

we will also use logarithmic scale, just like the
frequency axis.

Reason:

|(M1e
jφ1)(M2e

jφ2)| = M1 ·M2

log(M1M2) = logM1 + logM2

— this means that we can simply add the graphs of logM1(ω)
and logM2(ω) to obtain the graph of log

(
M1(ω)M2(ω)

)
, and

graphical addition is easy.

Decibel scale:

(M)dB = 20 log10M (one decade = 20 dB)
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Note on the Scale

Vertical axis on phase plots:

we will plot the phase on the usual (linear) scale.

Reason:

∠
(

(M1e
jφ1)(M2e

jφ2)
)

= ∠
(
M1M2e

j(φ1+φ2)
)

= φ1 + φ2

— this means that we can simply add the phase plots for two
transfer functions to obtain the phase plot for their product.
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Scale Convention for Bode Plots

magnitude phase

horizontal scale log log

vertical scale log linear

Advantage of the scale convention: we will learn to do Bode
plots by starting from simple factors and then building up to
general transfer functions by considering products of these
simple factors.


