Plan of the Lecture

- Review: rules for sketching root loci; introduction to dynamic compensation
- Today's topic: lead and lag dynamic compensation

Plan of the Lecture

- Review: rules for sketching root loci; introduction to dynamic compensation
- Today's topic: lead and lag dynamic compensation

Goal: introduce the use of lead and lag dynamic compensators for approximate implementation of PD and PI control.

Plan of the Lecture

- Review: rules for sketching root loci; introduction to dynamic compensation
- Today's topic: lead and lag dynamic compensation

Goal: introduce the use of lead and lag dynamic compensators for approximate implementation of PD and PI control.

Reading: FPE, Chapter 5

From Last Time: Double Integrator with PD-Control Characteristic equation: $\quad 1+K \cdot \frac{s+1}{s^{2}}=0$

From Last Time: Double Integrator with PD-Control

 Characteristic equation: $1+K \cdot \frac{s+1}{s^{2}}=0$

What can we conclude from this root locus about stabilization?

From Last Time: Double Integrator with PD-Control

 Characteristic equation: $1+K \cdot \frac{s+1}{s^{2}}=0$

What can we conclude from this root locus about stabilization?

- all closed-loop poles are in LHP (we already knew this from Routh, but now can visualize)

From Last Time: Double Integrator with PD-Control

 Characteristic equation: $1+K \cdot \frac{s+1}{s^{2}}=0$

What can we conclude from this root locus about stabilization?

- all closed-loop poles are in LHP (we already knew this from Routh, but now can visualize)
- nice damping, so can meet reasonable specs

From Last Time: Double Integrator with PD-Control

 Characteristic equation: $1+K \cdot \frac{s+1}{s^{2}}=0$

What can we conclude from this root locus about stabilization?

- all closed-loop poles are in LHP (we already knew this from Routh, but now can visualize)
- nice damping, so can meet reasonable specs

So, the effect of D-gain was to introduce an open-loop zero into LHP, and this zero "pulled" the root locus into LHP, thus stabilizing the system.

Dynamic Compensation

Objectives: stabilize the system and satisfy given time response specs using a stable, causal controller.

Characteristic equation:

$$
1+K \cdot \frac{s+z}{s+p} \cdot \frac{1}{s^{2}}=1+K L(s)=0
$$

Approximate PD Using Dynamic Compensation

Reminder: we can approximate the D-controller $K_{\mathrm{D}} s$ by

$$
K_{\mathrm{D}} \frac{p s}{s+p} \longrightarrow K_{\mathrm{D}} s \text { as } p \rightarrow \infty
$$

- here, $-p$ is the pole of the controller.

Approximate PD Using Dynamic Compensation

Reminder: we can approximate the D-controller $K_{\mathrm{D}} s$ by

$$
K_{\mathrm{D}} \frac{p s}{s+p} \longrightarrow K_{\mathrm{D}} s \text { as } p \rightarrow \infty
$$

- here, $-p$ is the pole of the controller.

So, we replace the PD controller $K_{\mathrm{P}}+K_{\mathrm{D}} s$ by

$$
K(s)=K_{\mathrm{P}}+K_{\mathrm{D}} \frac{p s}{s+p}
$$

Approximate PD Using Dynamic Compensation

Reminder: we can approximate the D-controller $K_{\mathrm{D}} s$ by

$$
K_{\mathrm{D}} \frac{p s}{s+p} \longrightarrow K_{\mathrm{D}} s \text { as } p \rightarrow \infty
$$

- here, $-p$ is the pole of the controller.

So, we replace the PD controller $K_{\mathrm{P}}+K_{\mathrm{D}} s$ by

$$
K(s)=K_{\mathrm{P}}+K_{\mathrm{D}} \frac{p s}{s+p}
$$

Approximate PD Using Dynamic Compensation

Reminder: we can approximate the D-controller $K_{\mathrm{D}} s$ by

$$
K_{\mathrm{D}} \frac{p s}{s+p} \longrightarrow K_{\mathrm{D}} s \text { as } p \rightarrow \infty
$$

- here, $-p$ is the pole of the controller.

So, we replace the PD controller $K_{\mathrm{P}}+K_{\mathrm{D}} s$ by

$$
K(s)=K_{\mathrm{P}}+K_{\mathrm{D}} \frac{p s}{s+p}
$$

Closed-loop poles: $1+\left(K_{\mathrm{P}}+K_{\mathrm{D}} \frac{p s}{s+p}\right) G(s)=0$

Lead \& Lag Compensators

Consider a general controller of the form

$$
K \frac{s+z}{s+p} \quad-K, z, p>0 \text { are design parameters }
$$

Lead \& Lag Compensators

Consider a general controller of the form

$$
K \frac{s+z}{s+p} \quad-K, z, p>0 \text { are design parameters }
$$

Depending on the relative values of z and p, we call it:

Lead \& Lag Compensators

Consider a general controller of the form

$$
K \frac{s+z}{s+p} \quad-K, z, p>0 \text { are design parameters }
$$

Depending on the relative values of z and p, we call it:

- a lead compensator when $z<p$

Lead \& Lag Compensators

Consider a general controller of the form

$$
K \frac{s+z}{s+p} \quad-K, z, p>0 \text { are design parameters }
$$

Depending on the relative values of z and p, we call it:

- a lead compensator when $z<p$
- a lag compensator when $z>p$

Lead \& Lag Compensators

Consider a general controller of the form

$$
K \frac{s+z}{s+p} \quad-K, z, p>0 \text { are design parameters }
$$

Depending on the relative values of z and p, we call it:

- a lead compensator when $z<p$
- a lag compensator when $z>p$

Why the name "lead/lag?" - think frequency response

Lead \& Lag Compensators

Consider a general controller of the form

$$
K \frac{s+z}{s+p} \quad-K, z, p>0 \text { are design parameters }
$$

Depending on the relative values of z and p, we call it:

- a lead compensator when $z<p$
- a lag compensator when $z>p$

Why the name "lead/lag?" - think frequency response

$$
\angle \frac{j \omega+z}{j \omega+p}=\angle(j \omega+z)-\angle(j \omega+p)=\psi-\phi
$$

Lead \& Lag Compensators

Consider a general controller of the form

$$
K \frac{s+z}{s+p} \quad-K, z, p>0 \text { are design parameters }
$$

Depending on the relative values of z and p, we call it:

- a lead compensator when $z<p$
- a lag compensator when $z>p$

Why the name "lead/lag?" - think frequency response

$$
\angle \frac{j \omega+z}{j \omega+p}=\angle(j \omega+z)-\angle(j \omega+p)=\psi-\phi
$$

- if $z<p$, then $\psi-\phi>0$ (phase lead)
- if $z>p$, then $\psi-\phi<0$ (phase lag)

Back to Double Integrator

Controller transfer function is $K \frac{s+z}{s+p}$, where:

$$
K=K_{\mathrm{P}}+p K_{\mathrm{D}}, \quad z=\frac{p K_{\mathrm{P}}}{K_{\mathrm{P}}+p K_{\mathrm{D}}}
$$

Back to Double Integrator

Controller transfer function is $K \frac{s+z}{s+p}$, where:

$$
K=K_{\mathrm{P}}+p K_{\mathrm{D}}, \quad z=\frac{p K_{\mathrm{P}}}{K_{\mathrm{P}}+p K_{\mathrm{D}}} \xrightarrow{p \rightarrow \infty} \frac{K_{\mathrm{P}}}{K_{\mathrm{D}}}
$$

Back to Double Integrator

Controller transfer function is $K \frac{s+z}{s+p}$, where:

$$
K=K_{\mathrm{P}}+p K_{\mathrm{D}}, \quad z=\frac{p K_{\mathrm{P}}}{K_{\mathrm{P}}+p K_{\mathrm{D}}} \xrightarrow{p \rightarrow \infty} \frac{K_{\mathrm{P}}}{K_{\mathrm{D}}}
$$

so, as $p \rightarrow \infty, z$ tends to a constant, so we get a lead controller.

Back to Double Integrator

Controller transfer function is $K \frac{s+z}{s+p}$, where:

$$
K=K_{\mathrm{P}}+p K_{\mathrm{D}}, \quad z=\frac{p K_{\mathrm{P}}}{K_{\mathrm{P}}+p K_{\mathrm{D}}} \xrightarrow{p \rightarrow \infty} \frac{K_{\mathrm{P}}}{K_{\mathrm{D}}}
$$

so, as $p \rightarrow \infty, z$ tends to a constant, so we get a lead controller.

We use lead controllers as dynamic compensators for approximate PD control.

Double Integrator \& Lead Compensator

Double Integrator \& Lead Compensator

To keep things simple, let's set $K_{\mathrm{P}}=K_{\mathrm{D}}$. Then:

Double Integrator \& Lead Compensator

To keep things simple, let's set $K_{\mathrm{P}}=K_{\mathrm{D}}$. Then:

$$
K=K_{\mathrm{P}}+p K_{\mathrm{D}}=(1+p) K_{\mathrm{D}}
$$

Double Integrator \& Lead Compensator

To keep things simple, let's set $K_{\mathrm{P}}=K_{\mathrm{D}}$. Then:

$$
\begin{aligned}
K & =K_{\mathrm{P}}+p K_{\mathrm{D}}=(1+p) K_{\mathrm{D}} \\
z & =\frac{p K_{\mathrm{P}}}{K_{\mathrm{P}}+p K_{\mathrm{D}}}
\end{aligned}
$$

Double Integrator \& Lead Compensator

To keep things simple, let's set $K_{\mathrm{P}}=K_{\mathrm{D}}$. Then:

$$
\begin{aligned}
& K=K_{\mathrm{P}}+p K_{\mathrm{D}} \\
&=(1+p) K_{\mathrm{D}} \\
& z=\frac{p K_{\mathrm{P}}}{K_{\mathrm{P}}+p K_{\mathrm{D}}}=\frac{p K_{\mathrm{D}}}{(1+p) K_{\mathrm{D}}}
\end{aligned}
$$

Double Integrator \& Lead Compensator

To keep things simple, let's set $K_{\mathrm{P}}=K_{\mathrm{D}}$. Then:

$$
\begin{aligned}
K & =K_{\mathrm{P}}+p K_{\mathrm{D}} \\
z & =\frac{p K_{\mathrm{P}}}{K_{\mathrm{P}}+p K_{\mathrm{D}}}=\frac{p K_{\mathrm{D}}}{(1+p) K_{\mathrm{D}}}=\frac{p}{1+p}
\end{aligned}
$$

Double Integrator \& Lead Compensator

To keep things simple, let's set $K_{\mathrm{P}}=K_{\mathrm{D}}$. Then:

$$
\begin{aligned}
& K=K_{\mathrm{P}}+p K_{\mathrm{D}} \\
&=(1+p) K_{\mathrm{D}} \\
& z=\frac{p K_{\mathrm{P}}}{K_{\mathrm{P}}+p K_{\mathrm{D}}}=\frac{p K_{\mathrm{D}}}{(1+p) K_{\mathrm{D}}}=\frac{p}{1+p} \xrightarrow{p \rightarrow \infty} 1
\end{aligned}
$$

Since we can choose p and z directly, let's take

$$
z=1 \quad \text { and } \quad p \text { large } .
$$

Double Integrator \& Lead Compensator

To keep things simple, let's set $K_{\mathrm{P}}=K_{\mathrm{D}}$. Then:

$$
\begin{aligned}
& K=K_{\mathrm{P}}+p K_{\mathrm{D}} \\
&=(1+p) K_{\mathrm{D}} \\
& z=\frac{p K_{\mathrm{P}}}{K_{\mathrm{P}}+p K_{\mathrm{D}}}=\frac{p K_{\mathrm{D}}}{(1+p) K_{\mathrm{D}}}=\frac{p}{1+p} \xrightarrow{p \rightarrow \infty} 1
\end{aligned}
$$

Since we can choose p and z directly, let's take

$$
z=1 \quad \text { and } \quad p \text { large } .
$$

We expect to get behavior similar to PD control.

Double Integrator \& Lead Compensator

Double Integrator \& Lead Compensator

Let's try a few values of p. Here's $p=10$:

Double Integrator \& Lead Compensator

Let's try a few values of p. Here's $p=10$:

Double Integrator \& Lead Compensator

Let's try a few values of p. Here's $p=10$:

Close to $j \omega$-axis, this root locus looks similar to the PD root locus. However, the pole at $s=-10$ makes the locus look different for s far into LHP.

Double Integrator \& Lead Compensator

$$
L(s)=\frac{s+1}{s^{2}(s+p)}
$$

Root locus for $p=10$:

Double Integrator \& Lead Compensator

$$
L(s)=\frac{s+1}{s^{2}(s+p)}
$$

Root locus for $p=10$:

The design seems to look good: nice damping, can meet reasonable specs.

Double Integrator \& Lead Compensator

$$
L(s)=\frac{s+1}{s^{2}(s+p)}
$$

Root locus for $p=10$:

The design seems to look good: nice damping, can meet reasonable specs.

Any concerns with large values of p ?

Double Integrator \& Lead Compensator

$$
L(s)=\frac{s+1}{s^{2}(s+p)}
$$

Root locus for $p=10$:

The design seems to look good: nice damping, can meet reasonable specs.

Any concerns with large values of p ?
When p is large, we are very close to PD control, so we run into the same issue: noise amplification.

Double Integrator \& Lead Compensator

$$
L(s)=\frac{s+1}{s^{2}(s+p)}
$$

Root locus for $p=10$:

The design seems to look good: nice damping, can meet reasonable specs.

Any concerns with large values of p ?
When p is large, we are very close to PD control, so we run into the same issue: noise amplification.
(This is just intuition for now - we will confirm it later using frequency-domain methods.)

Double Integrator \& Lead Compensator

$$
L(s)=\frac{s+1}{s^{2}(s+p)}
$$

Let's try $p=5$:

Double Integrator \& Lead Compensator

$$
L(s)=\frac{s+1}{s^{2}(s+p)}
$$

Let's try $p=5$:

Double Integrator \& Lead Compensator

$L(s)=\frac{s+1}{s^{2}(s+p)}$
Let's try $p=5$:

- for this value of p, the root locus is different, not nearly as nicely damped as for $p=10$.

Double Integrator \& Lead Compensator

$$
L(s)=\frac{s+1}{s^{2}(s+p)}
$$

Let's try p in between $p=5$ and $p=10$, say $p=9$:

Double Integrator \& Lead Compensator

$$
L(s)=\frac{s+1}{s^{2}(s+p)}
$$

Let's try p in between $p=5$ and $p=10$, say $p=9$:

Double Integrator \& Lead Compensator

$$
L(s)=\frac{s+1}{s^{2}(s+p)}
$$

Let's try p in between $p=5$ and $p=10$, say $p=9$:

- for this value of p, the branches meet (break in) and separate (break away) at the same point on the real axis.

Summary on Design Trade-offs

From what we have seen so far:

- p large - good damping, but bad noise suppression (too close to PD); the branches first break in (meet at the real axis), then break away.
- p small - noise suppression is better, but RL is too close to $j \omega$-axis, which is not good; no break-in for small values of p.
- intermediate values of p - transition between two types of RL; break-in and break-away points are the same.

Lead Controller Design

With a lead controller in place, we have

$$
K L(s)=K \frac{s+z}{s+p} \cdot G_{p}(s)
$$

where the lead zero parameter z and lead pole parameter p are constrained to satisfy $z<p$.

Lead Controller Design

With a lead controller in place, we have

$$
K L(s)=K \frac{s+z}{s+p} \cdot G_{p}(s)
$$

where the lead zero parameter z and lead pole parameter p are constrained to satisfy $z<p$.
In our example with $G_{p}(s)=1 / s^{2}$, we have set $z=1$ to approximate PD control.

Lead Controller Design

With a lead controller in place, we have

$$
K L(s)=K \frac{s+z}{s+p} \cdot G_{p}(s)
$$

where the lead zero parameter z and lead pole parameter p are constrained to satisfy $z<p$.
In our example with $G_{p}(s)=1 / s^{2}$, we have set $z=1$ to approximate PD control. Then $p>1$ is our design parameter (and, of course, K is the gain parameter in the root locus).

Lead Controller Design

With a lead controller in place, we have

$$
K L(s)=K \frac{s+z}{s+p} \cdot G_{p}(s)
$$

where the lead zero parameter z and lead pole parameter p are constrained to satisfy $z<p$.
In our example with $G_{p}(s)=1 / s^{2}$, we have set $z=1$ to approximate PD control. Then $p>1$ is our design parameter (and, of course, K is the gain parameter in the root locus).
Alternatively, we can assume that p is given (say, from noise suppression considerations), and we look for z that will give us a desired pole on the RL.

Lead Controller Design

With a lead controller in place, we have

$$
K L(s)=K \frac{s+z}{s+p} \cdot G_{p}(s)
$$

where the lead zero parameter z and lead pole parameter p are constrained to satisfy $z<p$.
In our example with $G_{p}(s)=1 / s^{2}$, we have set $z=1$ to approximate PD control. Then $p>1$ is our design parameter (and, of course, K is the gain parameter in the root locus).
Alternatively, we can assume that p is given (say, from noise suppression considerations), and we look for z that will give us a desired pole on the RL.

Is there a systematic procedure for doing this?

Pole Placement Using RL

Back to our example: double integrator with lead compensation

$$
K L(s)=K \frac{s+z}{s+p} \cdot \frac{1}{s^{2}}
$$

Problem: given p and a desired closed-loop pole s, find the value of z that will guarantee this (if possible).

Pole Placement Using RL

Back to our example: double integrator with lead compensation

$$
K L(s)=K \frac{s+z}{s+p} \cdot \frac{1}{s^{2}}
$$

Problem: given p and a desired closed-loop pole s, find the value of z that will guarantee this (if possible).
Solution: use the phase condition

Pole Placement Using RL

Back to our example: double integrator with lead compensation

$$
K L(s)=K \frac{s+z}{s+p} \cdot \frac{1}{s^{2}}
$$

Problem: given p and a desired closed-loop pole s, find the value of z that will guarantee this (if possible).
Solution: use the phase condition

Pole Placement Using RL

Back to our example: double integrator with lead compensation

$$
K L(s)=K \frac{s+z}{s+p} \cdot \frac{1}{s^{2}}
$$

Problem: given p and a desired closed-loop pole s, find the value of z that will guarantee this (if possible).
Solution: use the phase condition

Must have

So, we want $\psi=180^{\circ}+\sum_{i} \varphi_{i}$

Pole Placement Using RL

Pole Placement Using RL

Suppose

$$
\begin{aligned}
& \varphi_{1}=\varphi_{2}=120^{\circ}, \\
& \varphi_{3}=30^{\circ}
\end{aligned}
$$

Pole Placement Using RL

Suppose
$\varphi_{1}=\varphi_{2}=120^{\circ}$,
$\varphi_{3}=30^{\circ}$.
We want $\psi=180^{\circ}+\sum_{i} \varphi_{i}$

Pole Placement Using RL

Suppose
$\varphi_{1}=\varphi_{2}=120^{\circ}$,
$\varphi_{3}=30^{\circ}$.
We want $\psi=180^{\circ}+\sum_{i} \varphi_{i}$

Must have

$$
\psi=180^{\circ}+120^{\circ}+120^{\circ}+30^{\circ}
$$

Pole Placement Using RL

Suppose
$\varphi_{1}=\varphi_{2}=120^{\circ}$,
$\varphi_{3}=30^{\circ}$.
We want $\psi=180^{\circ}+\sum_{i} \varphi_{i}$

Must have

$$
\begin{aligned}
\psi & =180^{\circ}+120^{\circ}+120^{\circ}+30^{\circ} \\
& =450^{\circ}
\end{aligned}
$$

Pole Placement Using RL

Suppose
$\varphi_{1}=\varphi_{2}=120^{\circ}$,
$\varphi_{3}=30^{\circ}$.
We want $\psi=180^{\circ}+\sum_{i} \varphi_{i}$

Must have

$$
\begin{aligned}
\psi & =180^{\circ}+120^{\circ}+120^{\circ}+30^{\circ} \\
& =450^{\circ} \\
& =90^{\circ} \bmod 360^{\circ}
\end{aligned}
$$

Pole Placement Using RL

Suppose
$\varphi_{1}=\varphi_{2}=120^{\circ}$,
$\varphi_{3}=30^{\circ}$.
We want $\psi=180^{\circ}+\sum_{i} \varphi_{i}$

Must have

$$
\begin{aligned}
\psi & =180^{\circ}+120^{\circ}+120^{\circ}+30^{\circ} \\
& =450^{\circ} \\
& =90^{\circ} \bmod 360^{\circ}
\end{aligned}
$$

Thus, we should
have $z=-s$

Pole Placement Using RL

Suppose

$$
\begin{aligned}
& \varphi_{1}=\varphi_{2}=120^{\circ} \\
& \varphi_{3}=30^{\circ}
\end{aligned}
$$

We want $\psi=180^{\circ}+\sum_{i} \varphi_{i}$

Must have

$$
\begin{aligned}
\psi & =180^{\circ}+120^{\circ}+120^{\circ}+30^{\circ} \\
& =450^{\circ} \\
& =90^{\circ} \bmod 360^{\circ}
\end{aligned}
$$

Thus, we should

Control Design Using Root Locus

Case study: plant transfer function $G_{p}(s)=\frac{1}{s-1}$

Control Design Using Root Locus

Case study: plant transfer function $G_{p}(s)=\frac{1}{s-1}$
Control objective: stability and constant reference tracking

Control Design Using Root Locus

Case study: plant transfer function $G_{p}(s)=\frac{1}{s-1}$
Control objective: stability and constant reference tracking
In earlier lectures, we saw that for perfect steady-state tracking we need PI control

Control Design Using Root Locus

Case study: plant transfer function $G_{p}(s)=\frac{1}{s-1}$
Control objective: stability and constant reference tracking
In earlier lectures, we saw that for perfect steady-state tracking we need PI control

Closed-loop poles are determined by:

$$
1+\left(K_{\mathrm{P}}+\frac{K_{\mathrm{I}}}{s}\right)\left(\frac{1}{s-1}\right)=0
$$

Characteristic equation: $1+\underbrace{\left(K_{\mathrm{P}}+\frac{K_{\mathrm{I}}}{s}\right)}_{G_{c}(s)} \underbrace{\left(\frac{1}{s-1}\right)}_{G_{p}(s)}=0$

Characteristic equation: $1+\underbrace{\left(K_{\mathrm{P}}+\frac{K_{\mathrm{I}}}{s}\right)}_{G_{c}(s)} \underbrace{\left(\frac{1}{s-1}\right)}_{G_{p}(s)}=0$
To use the RL method, we need to convert it into the Evans form $1+K L(s)=0$, where $L(s)=\frac{b(s)}{a(s)}=\frac{s^{m}+b_{1} s^{m-1}+\ldots}{s^{n}+a_{1} s^{n-1}+\ldots}$

Characteristic equation: $1+\underbrace{\left(K_{\mathrm{P}}+\frac{K_{\mathrm{I}}}{s}\right)}_{G_{c}(s)} \underbrace{\left(\frac{1}{s-1}\right)}_{G_{p}(s)}=0$
To use the RL method, we need to convert it into the Evans form $1+K L(s)=0$, where $L(s)=\frac{b(s)}{a(s)}=\frac{s^{m}+b_{1} s^{m-1}+\ldots}{s^{n}+a_{1} s^{n-1}+\ldots}$

$$
1+\left(K_{\mathrm{P}}+\frac{K_{\mathrm{I}}}{s}\right) \frac{1}{s-1}=1+\frac{K_{\mathrm{P}} s+K_{\mathrm{I}}}{s} \frac{1}{s-1}
$$

Characteristic equation: $1+\underbrace{\left(K_{\mathrm{P}}+\frac{K_{\mathrm{I}}}{s}\right)}_{G_{c}(s)} \underbrace{\left(\frac{1}{s-1}\right)}_{G_{p}(s)}=0$
To use the RL method, we need to convert it into the Evans form $1+K L(s)=0$, where $L(s)=\frac{b(s)}{a(s)}=\frac{s^{m}+b_{1} s^{m-1}+\ldots}{s^{n}+a_{1} s^{n-1}+\ldots}$

$$
\begin{gathered}
1+\left(K_{\mathrm{P}}+\frac{K_{\mathrm{I}}}{s}\right) \frac{1}{s-1}=1+\frac{K_{\mathrm{P}} s+K_{\mathrm{I}}}{s} \frac{1}{s-1} \\
=1+K_{\mathrm{P}} \frac{s+K_{\mathrm{I}} / K_{\mathrm{P}}}{s(s-1)}
\end{gathered}
$$

Characteristic equation: $1+\underbrace{\left(K_{\mathrm{P}}+\frac{K_{\mathrm{I}}}{s}\right)}_{G_{c}(s)} \underbrace{\left(\frac{1}{s-1}\right)}_{G_{p}(s)}=0$
To use the RL method, we need to convert it into the Evans form $1+K L(s)=0$, where $L(s)=\frac{b(s)}{a(s)}=\frac{s^{m}+b_{1} s^{m-1}+\ldots}{s^{n}+a_{1} s^{n-1}+\ldots}$

$$
\begin{aligned}
1+\left(K_{\mathrm{P}}+\frac{K_{\mathrm{I}}}{s}\right) & \frac{1}{s-1}=1+\frac{K_{\mathrm{P}} s+K_{\mathrm{I}}}{s} \frac{1}{s-1} \\
& =1+K_{\mathrm{P}} \frac{s+K_{\mathrm{I}} / K_{\mathrm{P}}}{s(s-1)} \\
\Longrightarrow K=K_{\mathrm{P}}, L(s) & =\frac{s+K_{\mathrm{I}} / K_{\mathrm{P}}}{s(s-1)}
\end{aligned}
$$

Characteristic equation: $1+\underbrace{\left(K_{\mathrm{P}}+\frac{K_{\mathrm{I}}}{s}\right)}_{G_{c}(s)} \underbrace{\left(\frac{1}{s-1}\right)}_{G_{p}(s)}=0$
To use the RL method, we need to convert it into the Evans form $1+K L(s)=0$, where $L(s)=\frac{b(s)}{a(s)}=\frac{s^{m}+b_{1} s^{m-1}+\ldots}{s^{n}+a_{1} s^{n-1}+\ldots}$

$$
\begin{aligned}
& 1+\left(K_{\mathrm{P}}+\frac{K_{\mathrm{I}}}{s}\right) \frac{1}{s-1}=1+\frac{K_{\mathrm{P}} s+K_{\mathrm{I}}}{s} \frac{1}{s-1} \\
& =1+K_{\mathrm{P}} \frac{s+K_{\mathrm{I}} / K_{\mathrm{P}}}{s(s-1)} \\
& \left.\Longrightarrow K=K_{\mathrm{P}}, L(s)=\frac{s+K_{\mathrm{I}} / K_{\mathrm{P}}}{s(s-1)} \quad \text { (assume } K_{\mathrm{I}} / K_{\mathrm{P}} \text { fixed, }=1\right)
\end{aligned}
$$

Root Locus

$$
L(s)=\frac{s+1}{s(s-1)}
$$

Root Locus

$$
L(s)=\frac{s+1}{s(s-1)}
$$

Rule A: 2 branches

Root Locus

$$
L(s)=\frac{s+1}{s(s-1)}
$$

Rule A: 2 branches
Rule B: branches start at
$p_{1}=0, p_{2}=1$ (RHP!!)

Root Locus

$$
L(s)=\frac{s+1}{s(s-1)}
$$

Rule A: 2 branches
Rule B: branches start at
$p_{1}=0, p_{2}=1$ (RHP!!)
Rule C: branches end at $z_{1}=-1, \pm \infty$

Root Locus

$$
L(s)=\frac{s+1}{s(s-1)}
$$

Rule A: 2 branches
Rule B: branches start at
$p_{1}=0, p_{2}=1$ (RHP!!)
Rule C: branches end at $z_{1}=-1, \pm \infty$
Rule D: real locus $=[0,1],(-\infty,-1]$

Root Locus

$$
L(s)=\frac{s+1}{s(s-1)}
$$

Rule A: 2 branches
Rule B: branches start at
$p_{1}=0, p_{2}=1$ (RHP!!)
Rule C: branches end at $z_{1}=-1, \pm \infty$
Rule D: real locus $=[0,1],(-\infty,-1]$
Rule E: asymptote at 180°

Root Locus

$$
L(s)=\frac{s+1}{s(s-1)}
$$

Rule A: 2 branches
Rule B: branches start at
$p_{1}=0, p_{2}=1$ (RHP!!)
Rule C: branches end at $z_{1}=-1, \pm \infty$
Rule D: real locus $=[0,1],(-\infty,-1]$
Rule E: asymptote at 180°
Rule F: $j \omega$-crossings:

Root Locus

$$
L(s)=\frac{s+1}{s(s-1)}
$$

Rule A: 2 branches
Rule B: branches start at
$p_{1}=0, p_{2}=1$ (RHP!!)
Rule C: branches end at $z_{1}=-1, \pm \infty$
Rule D: real locus $=[0,1],(-\infty,-1]$
Rule E: asymptote at 180°
Rule F: $j \omega$-crossings:

$$
a(s)+K b(s)=0
$$

Root Locus

$$
L(s)=\frac{s+1}{s(s-1)}
$$

Rule A: 2 branches
Rule B: branches start at
$p_{1}=0, p_{2}=1$ (RHP!!)
Rule C: branches end at $z_{1}=-1, \pm \infty$
Rule D: real locus $=[0,1],(-\infty,-1]$
Rule E: asymptote at 180°
Rule F: $j \omega$-crossings:

$$
\begin{aligned}
& a(s)+K b(s)=0 \\
& s(s-1)+K(s+1)=0
\end{aligned}
$$

Root Locus

$$
L(s)=\frac{s+1}{s(s-1)}
$$

Rule A: 2 branches
Rule B: branches start at
$p_{1}=0, p_{2}=1$ (RHP!!)
Rule C: branches end at $z_{1}=-1, \pm \infty$
Rule D: real locus $=[0,1],(-\infty,-1]$
Rule E: asymptote at 180°
Rule F: $j \omega$-crossings:

$$
\begin{aligned}
& a(s)+K b(s)=0 \\
& s(s-1)+K(s+1)=0 \\
& s^{2}+(K-1) s+K=0
\end{aligned}
$$

Root Locus

$$
L(s)=\frac{s+1}{s(s-1)}
$$

Rule A: 2 branches
Rule B: branches start at
$p_{1}=0, p_{2}=1$ (RHP!!)
Rule C: branches end at $z_{1}=-1, \pm \infty$
Rule D: real locus $=[0,1],(-\infty,-1]$
Rule E: asymptote at 180°
Rule F: $j \omega$-crossings:

$$
\begin{aligned}
& a(s)+K b(s)=0 \\
& s(s-1)+K(s+1)=0 \\
& s^{2}+(K-1) s+K=0 \\
& K_{\text {critical }}=1
\end{aligned}
$$

Root Locus

$$
L(s)=\frac{s+1}{s(s-1)}
$$

Rule A: 2 branches
Rule B: branches start at
$p_{1}=0, p_{2}=1$ (RHP!!)
Rule C: branches end at $z_{1}=-1, \pm \infty$
Rule D: real locus $=[0,1],(-\infty,-1]$
Rule E: asymptote at 180°
Rule F: $j \omega$-crossings:

$$
\begin{aligned}
& a(s)+K b(s)=0 \\
& s(s-1)+K(s+1)=0 \\
& s^{2}+(K-1) s+K=0 \\
& K_{\text {critical }}=1 \Longrightarrow \omega_{0}=1
\end{aligned}
$$

Root Locus

$$
L(s)=\frac{s+1}{s(s-1)}
$$

Rule A: 2 branches
Rule B: branches start at
$p_{1}=0, p_{2}=1$ (RHP!!)
Rule C: branches end at $z_{1}=-1, \pm \infty$
Rule D: real locus $=[0,1],(-\infty,-1]$
Rule E: asymptote at 180°
Rule F: $j \omega$-crossings:

$$
\begin{aligned}
& a(s)+K b(s)=0 \\
& s(s-1)+K(s+1)=0 \\
& s^{2}+(K-1) s+K=0 \\
& K_{\text {critical }}=1 \Longrightarrow \omega_{0}=1
\end{aligned}
$$

Root Locus for PI Compensation

Root Locus for PI Compensation

- The system is stable for $K>1$ (from Routh-Hurwitz)

Root Locus for PI Compensation

- The system is stable for $K>1$ (from Routh-Hurwitz)
- For very large K, we get a completely damped system, with negative real poles

Root Locus for PI Compensation

- The system is stable for $K>1$ (from Routh-Hurwitz)
- For very large K, we get a completely damped system, with negative real poles
- Perfect steady-state tracking of constant references:

Root Locus for PI Compensation

- The system is stable for $K>1$ (from Routh-Hurwitz)
- For very large K, we get a completely damped system, with negative real poles
- Perfect steady-state tracking of constant references:

$$
\frac{E}{R}=\frac{1}{1+G_{c} G_{p}}
$$

Root Locus for PI Compensation

- The system is stable for $K>1$ (from Routh-Hurwitz)
- For very large K, we get a completely damped system, with negative real poles
- Perfect steady-state tracking of constant references:

$$
\begin{aligned}
\frac{E}{R} & =\frac{1}{1+G_{c} G_{p}} \\
& =\frac{s(s-1)}{s(s-1)+K(s+1)}
\end{aligned}
$$

Root Locus for PI Compensation

- The system is stable for $K>1$ (from Routh-Hurwitz)
- For very large K, we get a completely damped system, with negative real poles
- Perfect steady-state tracking of constant references:

$$
\begin{aligned}
& \frac{E}{R}=\frac{1}{1+G_{c} G_{p}} \\
& \quad=\frac{s(s-1)}{s(s-1)+K(s+1)} \\
& \text { DC gain }(R \rightarrow E)=0(\text { for } K>1)
\end{aligned}
$$

Root Locus for PI Compensation

- The system is stable for $K>1$ (from Routh-Hurwitz)
- For very large K, we get a completely damped system, with negative real poles
- Perfect steady-state tracking of constant references:

$$
\begin{aligned}
& \frac{E}{R}=\frac{1}{1+G_{c} G_{p}} \\
& \quad=\frac{s(s-1)}{s(s-1)+K(s+1)} \\
& \text { DC gain }(R \rightarrow E)=0(\text { for } K>1)
\end{aligned}
$$

- However: $1 / s$ is not a stable element.

