Plan of the Lecture

- Review: Proportional-Integral-Derivative (PID) control
- Today's topic: introduction to Root Locus design method

Plan of the Lecture

- Review: Proportional-Integral-Derivative (PID) control
- Today's topic: introduction to Root Locus design method

Goal: introduce the Root Locus method as a way of visualizing the locations of closed-loop poles of a given system as some parameter is varied.

Plan of the Lecture

- Review: Proportional-Integral-Derivative (PID) control
- Today's topic: introduction to Root Locus design method

Goal: introduce the Root Locus method as a way of visualizing the locations of closed-loop poles of a given system as some parameter is varied.

Reading: FPE, Chapter 5

Plan of the Lecture

- Review: Proportional-Integral-Derivative (PID) control
- Today's topic: introduction to Root Locus design method

Goal: introduce the Root Locus method as a way of visualizing the locations of closed-loop poles of a given system as some parameter is varied.

Reading: FPE, Chapter 5
Note!! The way I teach the Root Locus differs a bit from what the textbook does (good news: it is simpler). Still, pay attention in class!!

Course structure so far:

modeling	-	examples
\downarrow		
analysis	-	transfer function, response, stability
\downarrow		
design	-	some simple examples given

Course structure so far:

We will focus on design from now on.

The Root Locus Design Method

(invented by Walter R. Evans in 1948)

Consider this unity feedback configuration:

where

- K is a constant gain
- $L(s)=\frac{b(s)}{a(s)}$, where $a(s)$ and $b(s)$ are some polynomials

The Root Locus Design Method

The Root Locus Design Method

Closed-loop transfer function:

The Root Locus Design Method

Closed-loop transfer function: $\frac{Y}{R}=\frac{K L(s)}{1+K L(s)}, L(s)=\frac{b(s)}{a(s)}$

The Root Locus Design Method

Closed-loop transfer function: $\quad \frac{Y}{R}=\frac{K L(s)}{1+K L(s)}, L(s)=\frac{b(s)}{a(s)}$
Closed loop poles are solutions of:

The Root Locus Design Method

Closed-loop transfer function: $\quad \frac{Y}{R}=\frac{K L(s)}{1+K L(s)}, L(s)=\frac{b(s)}{a(s)}$
Closed loop poles are solutions of:

$$
1+K L(s)=0
$$

The Root Locus Design Method

Closed-loop transfer function: $\quad \frac{Y}{R}=\frac{K L(s)}{1+K L(s)}, L(s)=\frac{b(s)}{a(s)}$
Closed loop poles are solutions of:

$$
1+K L(s)=0 \quad \Leftrightarrow \quad L(s)=-\frac{1}{K}
$$

The Root Locus Design Method

Closed-loop transfer function: $\quad \frac{Y}{R}=\frac{K L(s)}{1+K L(s)}, L(s)=\frac{b(s)}{a(s)}$
Closed loop poles are solutions of:

$$
\begin{aligned}
1+K L(s)= & 0 \quad \Leftrightarrow \quad L(s)=-\frac{1}{K} \\
& \Uparrow \\
1+\frac{K b(s)}{a(s)}= & 0
\end{aligned}
$$

The Root Locus Design Method

Closed-loop transfer function: $\quad \frac{Y}{R}=\frac{K L(s)}{1+K L(s)}, L(s)=\frac{b(s)}{a(s)}$
Closed loop poles are solutions of:

$$
\begin{aligned}
1+K L(s)= & 0 \quad \Leftrightarrow \quad L(s)=-\frac{1}{K} \\
& \Uparrow \\
1+\frac{K b(s)}{a(s)}= & 0 \\
& \mathbb{\Downarrow} \\
\underbrace{a(s)+K b(s)}= & 0 \quad \text { characteristic equation }
\end{aligned}
$$

A Comment on Change of Notation

Note the change of notation:

$$
\text { from } H(s) \text { or } G(s)=\frac{q(s)}{p(s)} \quad \text { to } L(s)=\frac{b(s)}{a(s)}
$$

A Comment on Change of Notation

Note the change of notation:

$$
\text { from } H(s) \text { or } G(s)=\frac{q(s)}{p(s)} \quad \text { to } L(s)=\frac{b(s)}{a(s)}
$$

- the RL method is quite general, so $L(s)$ is not necessarily the plant transfer function, and K is not necessary feedback gain (could be any parameter).

A Comment on Change of Notation

Note the change of notation:

$$
\text { from } H(s) \text { or } G(s)=\frac{q(s)}{p(s)} \quad \text { to } L(s)=\frac{b(s)}{a(s)}
$$

- the RL method is quite general, so $L(s)$ is not necessarily the plant transfer function, and K is not necessary feedback gain (could be any parameter).
E.g., $L(s)$ and K may be related to plant transfer function and feedback gain through some transformation.

A Comment on Change of Notation

Note the change of notation:

$$
\text { from } H(s) \text { or } G(s)=\frac{q(s)}{p(s)} \quad \text { to } L(s)=\frac{b(s)}{a(s)}
$$

- the RL method is quite general, so $L(s)$ is not necessarily the plant transfer function, and K is not necessary feedback gain (could be any parameter).
E.g., $L(s)$ and K may be related to plant transfer function and feedback gain through some transformation.

As long as we can represent the poles of the closed-loop transfer function as roots of the equation $1+K L(s)=0$ for some choice of K and $L(s)$, we can apply the RL method.

Towards Quantitative Characterization of Stability

Qualitative description of stability: Routh test gives us a range of K to guarantee stability.

For what values of K do we best satisfy given design specs?

Root Locus and Quantitative Stability

Closed-loop transfer function: $\quad \frac{Y}{R}=\frac{K L(s)}{1+K L(s)}, L(s)=\frac{b(s)}{a(s)}$

Root Locus and Quantitative Stability

Closed-loop transfer function: $\quad \frac{Y}{R}=\frac{K L(s)}{1+K L(s)}, L(s)=\frac{b(s)}{a(s)}$
For what values of K do we best satisfy given design specs?

Root Locus and Quantitative Stability

Closed-loop transfer function: $\quad \frac{Y}{R}=\frac{K L(s)}{1+K L(s)}, L(s)=\frac{b(s)}{a(s)}$
For what values of K do we best satisfy given design specs?
Specs are encoded in pole locations, so:

Root Locus and Quantitative Stability

Closed-loop transfer function: $\quad \frac{Y}{R}=\frac{K L(s)}{1+K L(s)}, L(s)=\frac{b(s)}{a(s)}$
For what values of K do we best satisfy given design specs?
Specs are encoded in pole locations, so:
The root locus for $1+K L(s)$ is the set of all closed-loop poles, i.e., the roots of

$$
1+K L(s)=0
$$

as K varies from 0 to ∞.

A Simple Example

$$
L(s)=\frac{1}{s^{2}+s} \quad b(s)=1, a(s)=s^{2}+s
$$

A Simple Example

$$
L(s)=\frac{1}{s^{2}+s} \quad b(s)=1, a(s)=s^{2}+s
$$

Characteristic equation:

$$
a(s)+K b(s)=0
$$

$$
s^{2}+s+K=0
$$

A Simple Example

$$
L(s)=\frac{1}{s^{2}+s} \quad b(s)=1, a(s)=s^{2}+s
$$

Characteristic equation:

$$
a(s)+K b(s)=0
$$

$$
s^{2}+s+K=0
$$

Here, we can just use the quadratic formula:

$$
s=-\frac{1 \pm \sqrt{1-4 K}}{2}=-\frac{1}{2} \pm \frac{\sqrt{1-4 K}}{2}
$$

A Simple Example

$$
L(s)=\frac{1}{s^{2}+s} \quad b(s)=1, a(s)=s^{2}+s
$$

Characteristic equation:

$$
a(s)+K b(s)=0
$$

$$
s^{2}+s+K=0
$$

Here, we can just use the quadratic formula:

$$
s=-\frac{1 \pm \sqrt{1-4 K}}{2}=-\frac{1}{2} \pm \frac{\sqrt{1-4 K}}{2}
$$

$$
\text { Root locus }=\left\{-\frac{1}{2} \pm \frac{\sqrt{1-4 K}}{2}: 0 \leq K<\infty\right\} \subset \mathbb{C}
$$

Example, continued

$$
\text { Root locus }=\left\{-\frac{1}{2} \pm \frac{\sqrt{1-4 K}}{2}: 0 \leq K<\infty\right\} \subset \mathbb{C}
$$

Example, continued

$$
\text { Root locus }=\left\{-\frac{1}{2} \pm \frac{\sqrt{1-4 K}}{2}: 0 \leq K<\infty\right\} \subset \mathbb{C}
$$

Let's plot it in the s-plane:

Example, continued

$$
\text { Root locus }=\left\{-\frac{1}{2} \pm \frac{\sqrt{1-4 K}}{2}: 0 \leq K<\infty\right\} \subset \mathbb{C}
$$

Let's plot it in the s-plane:

- start at $K=0$

Example, continued

$$
\text { Root locus }=\left\{-\frac{1}{2} \pm \frac{\sqrt{1-4 K}}{2}: 0 \leq K<\infty\right\} \subset \mathbb{C}
$$

Let's plot it in the s-plane:

- start at $K=0 \quad$ the roots are $-\frac{1}{2} \pm \frac{1}{2} \equiv-1,0$

Example, continued

$$
\text { Root locus }=\left\{-\frac{1}{2} \pm \frac{\sqrt{1-4 K}}{2}: 0 \leq K<\infty\right\} \subset \mathbb{C}
$$

Let's plot it in the s-plane:

- start at $K=0 \quad$ the roots are $-\frac{1}{2} \pm \frac{1}{2} \equiv-1,0$ note: these are poles of L (open-loop poles)

Example, continued

$$
\text { Root locus }=\left\{-\frac{1}{2} \pm \frac{\sqrt{1-4 K}}{2}: 0 \leq K<\infty\right\} \subset \mathbb{C}
$$

Let's plot it in the s-plane:

- start at $K=0 \quad$ the roots are $-\frac{1}{2} \pm \frac{1}{2} \equiv-1,0$ note: these are poles of L (open-loop poles)

Example, continued

$$
\text { Root locus: }\left\{-\frac{1}{2} \pm \frac{\sqrt{1-4 K}}{2}: 0 \leq K<\infty\right\} \subset \mathbb{C}
$$

Example, continued

Root locus: $\left\{-\frac{1}{2} \pm \frac{\sqrt{1-4 K}}{2}: 0 \leq K<\infty\right\} \subset \mathbb{C}$

- as K increases from 0 , the poles start to move

Example, continued

Root locus: $\left\{-\frac{1}{2} \pm \frac{\sqrt{1-4 K}}{2}: 0 \leq K<\infty\right\} \subset \mathbb{C}$

- as K increases from 0 , the poles start to move

$$
1-4 K>0
$$

Example, continued

Root locus: $\left\{-\frac{1}{2} \pm \frac{\sqrt{1-4 K}}{2}: 0 \leq K<\infty\right\} \subset \mathbb{C}$

- as K increases from 0 , the poles start to move

$$
1-4 K>0 \quad \Longrightarrow 2 \text { real roots }
$$

Example, continued

Root locus: $\left\{-\frac{1}{2} \pm \frac{\sqrt{1-4 K}}{2}: 0 \leq K<\infty\right\} \subset \mathbb{C}$

- as K increases from 0 , the poles start to move

$$
\begin{gathered}
1-4 K>0 \quad \Longrightarrow 2 \text { real roots } \\
K=1 / 4
\end{gathered}
$$

Example, continued

Root locus: $\left\{-\frac{1}{2} \pm \frac{\sqrt{1-4 K}}{2}: 0 \leq K<\infty\right\} \subset \mathbb{C}$

- as K increases from 0 , the poles start to move

$$
\begin{aligned}
1-4 K>0 & \Longrightarrow 2 \text { real roots } \\
K=1 / 4 & \Longrightarrow 1 \text { real root } s=-1 / 2
\end{aligned}
$$

Example, continued

Root locus: $\left\{-\frac{1}{2} \pm \frac{\sqrt{1-4 K}}{2}: 0 \leq K<\infty\right\} \subset \mathbb{C}$

- as K increases from 0 , the poles start to move

$$
\begin{aligned}
1-4 K>0 & \Longrightarrow 2 \text { real roots } \\
K=1 / 4 & \Longrightarrow 1 \text { real root } s=-1 / 2
\end{aligned}
$$

Example, continued

Root locus: $\left\{-\frac{1}{2} \pm \frac{\sqrt{1-4 K}}{2}: 0 \leq K<\infty\right\} \subset \mathbb{C}$

- as K increases from 0 , the poles start to move

Example, continued

Root locus: $\left\{-\frac{1}{2} \pm \frac{\sqrt{1-4 K}}{2}: 0 \leq K<\infty\right\} \subset \mathbb{C}$

- as K increases from 0 , the poles start to move

$$
K>1 / 4
$$

Example, continued

Root locus: $\left\{-\frac{1}{2} \pm \frac{\sqrt{1-4 K}}{2}: 0 \leq K<\infty\right\} \subset \mathbb{C}$

- as K increases from 0 , the poles start to move

$$
K>1 / 4 \quad \Longrightarrow 2 \text { complex roots with } \operatorname{Re}(s)=-1 / 2
$$

Example, continued

Root locus: $\left\{-\frac{1}{2} \pm \frac{\sqrt{1-4 K}}{2}: 0 \leq K<\infty\right\} \subset \mathbb{C}$

- as K increases from 0 , the poles start to move
$K>1 / 4 \quad \Longrightarrow 2$ complex roots with $\operatorname{Re}(s)=-1 / 2$

Example, continued

Root locus: $\left\{-\frac{1}{2} \pm \frac{\sqrt{1-4 K}}{2}: 0 \leq K<\infty\right\} \subset \mathbb{C}$

- as K increases from 0 , the poles start to move

$$
K>1 / 4 \quad \Longrightarrow 2 \text { complex roots with } \operatorname{Re}(s)=-1 / 2
$$

($s=-1 / 2$ is the point of breakaway from the real axis)

Example, continued

Compare this to admissible regions for given specs:

Example, continued

Compare this to admissible regions for given specs:

$$
t_{s} \approx \frac{3}{\sigma}
$$

Example, continued

Compare this to admissible regions for given specs:
$t_{s} \approx \frac{3}{\sigma} \quad$ want σ large, can only have $\sigma=\frac{1}{2}\left(t_{s}=6\right)$

Example, continued

Compare this to admissible regions for given specs:

$$
\begin{aligned}
t_{s} & \approx \frac{3}{\sigma} \quad \text { want } \sigma \text { large, can only have } \sigma=\frac{1}{2}\left(t_{s}=6\right) \\
t_{r} & \approx \frac{1.8}{\omega_{n}}
\end{aligned}
$$

Example, continued

Compare this to admissible regions for given specs:
$t_{s} \approx \frac{3}{\sigma} \quad$ want σ large, can only have $\sigma=\frac{1}{2}\left(t_{s}=6\right)$
$t_{r} \approx \frac{1.8}{\omega_{n}} \quad$ want ω_{n} large \Longrightarrow want K large

Example, continued

Compare this to admissible regions for given specs:
$t_{s} \approx \frac{3}{\sigma} \quad$ want σ large, can only have $\sigma=\frac{1}{2}\left(t_{s}=6\right)$
$t_{r} \approx \frac{1.8}{\omega_{n}} \quad$ want ω_{n} large \Longrightarrow want K large
$M_{p} \quad$ want to be inside the shaded region \Longrightarrow want K small

Example, continued

Compare this to admissible regions for given specs:
$t_{s} \approx \frac{3}{\sigma} \quad$ want σ large, can only have $\sigma=\frac{1}{2}\left(t_{s}=6\right)$
$t_{r} \approx \frac{1.8}{\omega_{n}} \quad$ want ω_{n} large \Longrightarrow want K large
$M_{p} \quad$ want to be inside the shaded region \Longrightarrow want K small

Thus, the root locus helps us visualize the trade-off between all the specs in terms of K.

Thus, the root locus helps us visualize the trade-off between all the specs in terms of K.

However, for order >2, there will generally be no direct formula for the closed-loop poles as a function of K.

Thus, the root locus helps us visualize the trade-off between all the specs in terms of K.

However, for order >2, there will generally be no direct formula for the closed-loop poles as a function of K.

Our goal: develop simple rules for (approximately) sketching the root locus in the general case.

Equivalent Characterization of RL: Phase Condition

Recall our original definition: The root locus for $1+K L(s)$ is the set of all closed-loop poles, i.e., the roots of

$$
1+K L(s)=0
$$

as K varies from 0 to ∞.

Equivalent Characterization of RL: Phase Condition

Recall our original definition: The root locus for $1+K L(s)$ is the set of all closed-loop poles, i.e., the roots of

$$
1+K L(s)=0
$$

as K varies from 0 to ∞.
A point $s \in \mathbb{C}$ is on the RL if and only if

$$
L(s)=\underbrace{-\frac{1}{K}}_{\text {negative and real }} \text { for some } K>0
$$

Equivalent Characterization of RL: Phase Condition

Recall our original definition: The root locus for $1+K L(s)$ is the set of all closed-loop poles, i.e., the roots of

$$
1+K L(s)=0
$$

as K varies from 0 to ∞.
A point $s \in \mathbb{C}$ is on the RL if and only if

$$
L(s)=\underbrace{-\frac{1}{K}}_{\text {negative and real }} \text { for some } K>0
$$

This gives us an equivalent characterization:
The phase condition: The root locus of $1+K L(s)$ is the set of all $s \in \mathbb{C}$, such that $\angle L(s)=180^{\circ}$, i.e., $L(s)$ is real and negative.

Six Rules for Sketching Root Loci

There are six rules for sketching root loci. These rules are mainly qualitative, and their purpose is to give intuition about impact of poles and zeros on performance.

Six Rules for Sketching Root Loci

There are six rules for sketching root loci. These rules are mainly qualitative, and their purpose is to give intuition about impact of poles and zeros on performance.

These rules are:

Six Rules for Sketching Root Loci

There are six rules for sketching root loci. These rules are mainly qualitative, and their purpose is to give intuition about impact of poles and zeros on performance.

These rules are:

- Rule A - number of branches

Six Rules for Sketching Root Loci

There are six rules for sketching root loci. These rules are mainly qualitative, and their purpose is to give intuition about impact of poles and zeros on performance.

These rules are:

- Rule A - number of branches
- Rule B - start points

Six Rules for Sketching Root Loci

There are six rules for sketching root loci. These rules are mainly qualitative, and their purpose is to give intuition about impact of poles and zeros on performance.

These rules are:

- Rule A - number of branches
- Rule B - start points
- Rule C - end points

Six Rules for Sketching Root Loci

There are six rules for sketching root loci. These rules are mainly qualitative, and their purpose is to give intuition about impact of poles and zeros on performance.

These rules are:

- Rule A - number of branches
- Rule B - start points
- Rule C - end points
- Rule D - real locus

Six Rules for Sketching Root Loci

There are six rules for sketching root loci. These rules are mainly qualitative, and their purpose is to give intuition about impact of poles and zeros on performance.

These rules are:

- Rule A - number of branches
- Rule B - start points
- Rule C - end points
- Rule D - real locus
- Rule E - asymptotes

Six Rules for Sketching Root Loci

There are six rules for sketching root loci. These rules are mainly qualitative, and their purpose is to give intuition about impact of poles and zeros on performance.

These rules are:

- Rule A - number of branches
- Rule B - start points
- Rule C - end points
- Rule D - real locus
- Rule E - asymptotes
- Rule F - $j \omega$-crossings

Six Rules for Sketching Root Loci

There are six rules for sketching root loci. These rules are mainly qualitative, and their purpose is to give intuition about impact of poles and zeros on performance.

These rules are:

- Rule A - number of branches
- Rule B - start points
- Rule C - end points
- Rule D - real locus
- Rule E - asymptotes
- Rule F - $j \omega$-crossings

Today, we will cover mostly Rules A-C (and a bit of D).

Rule A: Number of Branches

$$
1+K \frac{b(s)}{a(s)}
$$

Rule A: Number of Branches

$$
1+K \frac{b(s)}{a(s)}=1+K \frac{s^{m}+b_{1} s^{m-1}+\ldots+b_{m-1} s+b_{m}}{s^{n}+a_{1} s^{n-1}+\ldots+a_{n-1} s+a_{n}}=0
$$

Rule A: Number of Branches

$$
\begin{aligned}
1+K \frac{b(s)}{a(s)}= & 1+K \frac{s^{m}+b_{1} s^{m-1}+\ldots+b_{m-1} s+b_{m}}{s^{n}+a_{1} s^{n-1}+\ldots+a_{n-1} s+a_{n}}=0 \\
\Longrightarrow\left(s^{n}+a_{1} s^{n-1}\right. & \left.+\ldots+a_{n-1} s+a_{n}\right) \\
& +K\left(s^{m}+b_{1} s^{m-1}+\ldots+b_{m-1} s+b_{m}\right)=0
\end{aligned}
$$

Rule A: Number of Branches

$$
\begin{aligned}
1+K \frac{b(s)}{a(s)}= & 1+K \frac{s^{m}+b_{1} s^{m-1}+\ldots+b_{m-1} s+b_{m}}{s^{n}+a_{1} s^{n-1}+\ldots+a_{n-1} s+a_{n}}=0 \\
\Longrightarrow\left(s^{n}+a_{1} s^{n-1}\right. & \left.+\ldots+a_{n-1} s+a_{n}\right) \\
& +K\left(s^{m}+b_{1} s^{m-1}+\ldots+b_{m-1} s+b_{m}\right)=0
\end{aligned}
$$

Since $\operatorname{deg}(a)=n \geq m=\operatorname{deg}(b)$, the characteristic polynomial $a(s)+K b(s)=0$ has degree n.

Rule A: Number of Branches

$$
\begin{aligned}
1+K \frac{b(s)}{a(s)}= & 1+K \frac{s^{m}+b_{1} s^{m-1}+\ldots+b_{m-1} s+b_{m}}{s^{n}+a_{1} s^{n-1}+\ldots+a_{n-1} s+a_{n}}=0 \\
\Longrightarrow\left(s^{n}+a_{1} s^{n-1}\right. & \left.+\ldots+a_{n-1} s+a_{n}\right) \\
& +K\left(s^{m}+b_{1} s^{m-1}+\ldots+b_{m-1} s+b_{m}\right)=0
\end{aligned}
$$

Since $\operatorname{deg}(a)=n \geq m=\operatorname{deg}(b)$, the characteristic polynomial $a(s)+K b(s)=0$ has degree n.

The characteristic polynomial has n solutions (roots), some of which may be repeated. As we vary K, these n solutions also vary to form n branches.

Rule A: Number of Branches

$$
\begin{aligned}
1+K \frac{b(s)}{a(s)}= & 1+K \frac{s^{m}+b_{1} s^{m-1}+\ldots+b_{m-1} s+b_{m}}{s^{n}+a_{1} s^{n-1}+\ldots+a_{n-1} s+a_{n}}=0 \\
\Longrightarrow\left(s^{n}+a_{1} s^{n-1}\right. & \left.+\ldots+a_{n-1} s+a_{n}\right) \\
& +K\left(s^{m}+b_{1} s^{m-1}+\ldots+b_{m-1} s+b_{m}\right)=0
\end{aligned}
$$

Since $\operatorname{deg}(a)=n \geq m=\operatorname{deg}(b)$, the characteristic polynomial $a(s)+K b(s)=0$ has degree n.

The characteristic polynomial has n solutions (roots), some of which may be repeated. As we vary K, these n solutions also vary to form n branches.

Rule A:

$$
\#(\text { branches })=\operatorname{deg}(a)
$$

Rule B: Start Points

The locus starts from $K=0$.

Rule B: Start Points

The locus starts from $K=0$. What happens near $K=0$?

Rule B: Start Points

The locus starts from $K=0$. What happens near $K=0$?
If $a(s)+K b(s)=0$ and $K \sim 0$, then $a(s) \approx 0$.

Rule B: Start Points

The locus starts from $K=0$. What happens near $K=0$?
If $a(s)+K b(s)=0$ and $K \sim 0$, then $a(s) \approx 0$.
Therefore:

Rule B: Start Points

The locus starts from $K=0$. What happens near $K=0$?
If $a(s)+K b(s)=0$ and $K \sim 0$, then $a(s) \approx 0$.
Therefore:

- s is close to a root of $a(s)=0$, or

Rule B: Start Points

The locus starts from $K=0$. What happens near $K=0$?
If $a(s)+K b(s)=0$ and $K \sim 0$, then $a(s) \approx 0$.
Therefore:

- s is close to a root of $a(s)=0$, or
- s is close to a pole of $L(s)$

Rule B: Start Points

The locus starts from $K=0$. What happens near $K=0$?
If $a(s)+K b(s)=0$ and $K \sim 0$, then $a(s) \approx 0$.
Therefore:

- s is close to a root of $a(s)=0$, or
- s is close to a pole of $L(s)$

Rule B: branches start at open-loop poles.

Rule C: End Points

What happens to the locus as $K \rightarrow \infty$?

Rule C: End Points

What happens to the locus as $K \rightarrow \infty$?

$$
a(s)+K b(s)=0
$$

Rule C: End Points

What happens to the locus as $K \rightarrow \infty$?

$$
\begin{array}{r}
a(s)+K b(s)=0 \\
b(s)=-\frac{1}{K} a(s)
\end{array}
$$

Rule C: End Points

What happens to the locus as $K \rightarrow \infty$?

$$
\begin{array}{r}
a(s)+K b(s)=0 \\
b(s)=-\frac{1}{K} a(s)
\end{array}
$$

- as $K \rightarrow \infty$,

Rule C: End Points

What happens to the locus as $K \rightarrow \infty$?

$$
\begin{array}{r}
a(s)+K b(s)=0 \\
b(s)=-\frac{1}{K} a(s)
\end{array}
$$

- as $K \rightarrow \infty$,
- branches end at the roots of $b(s)=0$, or

Rule C: End Points

What happens to the locus as $K \rightarrow \infty$?

$$
\begin{array}{r}
a(s)+K b(s)=0 \\
b(s)=-\frac{1}{K} a(s)
\end{array}
$$

- as $K \rightarrow \infty$,
- branches end at the roots of $b(s)=0$, or
- branches end at zeros of $L(s)$

Rule C: End Points

What happens to the locus as $K \rightarrow \infty$?

$$
\begin{array}{r}
a(s)+K b(s)=0 \\
b(s)=-\frac{1}{K} a(s)
\end{array}
$$

- as $K \rightarrow \infty$,
- branches end at the roots of $b(s)=0$, or
- branches end at zeros of $L(s)$

Rule C: branches end at open-loop zeros.

Rule C: End Points

What happens to the locus as $K \rightarrow \infty$?

$$
\begin{array}{r}
a(s)+K b(s)=0 \\
b(s)=-\frac{1}{K} a(s)
\end{array}
$$

- as $K \rightarrow \infty$,
- branches end at the roots of $b(s)=0$, or
- branches end at zeros of $L(s)$

Rule C: branches end at open-loop zeros.
Note: if $n>m$, we have n branches, but only m zeros. The remaining $n-m$ branches go off to infinity (end at "zeros at infinity").

Example

PD control of an unstable 2nd-order plant

Example

PD control of an unstable 2nd-order plant

$$
\frac{Y}{R}=\frac{G_{c} G_{p}}{1+G_{c} G_{p}} \quad \text { poles: } 1+G_{c}(s) G_{p}(s)=0
$$

$$
1+\left(K_{\mathrm{P}}+K_{\mathrm{D}} s\right)\left(\frac{1}{s^{2}-1}\right)=0
$$

Example

PD control of an unstable 2nd-order plant

$$
\frac{Y}{R}=\frac{G_{c} G_{p}}{1+G_{c} G_{p}} \quad \text { poles: } 1+G_{c}(s) G_{p}(s)=0
$$

$$
1+\left(K_{\mathrm{P}}+K_{\mathrm{D}} s\right)\left(\frac{1}{s^{2}-1}\right)=0
$$

We will examine the impact of varying $K=K_{\mathrm{D}}$, assuming the ratio $K_{\mathrm{P}} / K_{\mathrm{D}}$ fixed.

Example

PD control of an unstable 2nd-order plant

We will examine the impact of varying $K=K_{\mathrm{D}}$, assuming the ratio $K_{\mathrm{P}} / K_{\mathrm{D}}$ fixed.

Example

PD control of an unstable 2nd-order plant

We will examine the impact of varying $K=K_{\mathrm{D}}$, assuming the ratio $K_{\mathrm{P}} / K_{\mathrm{D}}$ fixed.
Let us write the characteristic equation in Evans form:

Example

PD control of an unstable 2nd-order plant

We will examine the impact of varying $K=K_{\mathrm{D}}$, assuming the ratio $K_{\mathrm{P}} / K_{\mathrm{D}}$ fixed.
Let us write the characteristic equation in Evans form:

$$
1+\underbrace{K_{\mathrm{D}}}_{K}\left(s+\frac{K_{\mathrm{P}}}{K_{\mathrm{D}}}\right)\left(\frac{1}{s^{2}-1}\right)
$$

Example

PD control of an unstable 2nd-order plant

We will examine the impact of varying $K=K_{\mathrm{D}}$, assuming the ratio $K_{\mathrm{P}} / K_{\mathrm{D}}$ fixed.

Let us write the characteristic equation in Evans form:

$$
1+\underbrace{K_{\mathrm{D}}}_{K}\left(s+\frac{K_{\mathrm{P}}}{K_{\mathrm{D}}}\right)\left(\frac{1}{s^{2}-1}\right)=1+K \underbrace{\frac{s+K_{\mathrm{P}} / K_{\mathrm{D}}}{s^{2}-1}}_{L(s)}=0
$$

Example

PD control of an unstable 2nd-order plant

We will examine the impact of varying $K=K_{\mathrm{D}}$, assuming the ratio $K_{\mathrm{P}} / K_{\mathrm{D}}$ fixed.

Let us write the characteristic equation in Evans form:

$$
\begin{aligned}
& 1+\underbrace{K_{\mathrm{D}}}_{K}\left(s+\frac{K_{\mathrm{P}}}{K_{\mathrm{D}}}\right)\left(\frac{1}{s^{2}-1}\right)=1+K \underbrace{\frac{s+K_{\mathrm{P}} / K_{\mathrm{D}}}{s^{2}-1}}_{L(s)}=0 \\
& L(s)=\frac{s-z_{1}}{s^{2}-1}
\end{aligned}
$$

Example

PD control of an unstable 2nd-order plant

We will examine the impact of varying $K=K_{\mathrm{D}}$, assuming the ratio $K_{\mathrm{P}} / K_{\mathrm{D}}$ fixed.

Let us write the characteristic equation in Evans form:

$$
\begin{aligned}
& 1+\underbrace{K_{\mathrm{D}}}_{K}\left(s+\frac{K_{\mathrm{P}}}{K_{\mathrm{D}}}\right)\left(\frac{1}{s^{2}-1}\right)=1+K \underbrace{\frac{s+K_{\mathrm{P}} / K_{\mathrm{D}}}{s^{2}-1}}_{L(s)}=0 \\
& L(s)=\frac{s-z_{1}}{s^{2}-1} \quad \text { zero at } s=z_{1}=-K_{\mathrm{P}} / K_{\mathrm{D}}<0
\end{aligned}
$$

Example

$$
L(s)=\frac{s-z_{1}}{s^{2}-1}
$$

Example

$$
L(s)=\frac{s-z_{1}}{s^{2}-1}
$$

- Rule A:

Example

$$
L(s)=\frac{s-z_{1}}{s^{2}-1}
$$

- Rule A: $\left\{\begin{array}{l}m=1 \\ n=2\end{array} \Longrightarrow\right.$

Example

$$
L(s)=\frac{s-z_{1}}{s^{2}-1}
$$

- Rule A: $\left\{\begin{array}{l}m=1 \\ n=2\end{array} \Longrightarrow 2\right.$ branches

Example

$$
L(s)=\frac{s-z_{1}}{s^{2}-1}
$$

- Rule A: $\left\{\begin{array}{l}m=1 \\ n=2\end{array} \Longrightarrow 2\right.$ branches
- Rule B:

Example

$$
L(s)=\frac{s-z_{1}}{s^{2}-1}
$$

- Rule A: $\left\{\begin{array}{l}m=1 \\ n=2\end{array} \Longrightarrow 2\right.$ branches
- Rule B: branches start at open-loop poles

Example

$$
L(s)=\frac{s-z_{1}}{s^{2}-1}
$$

- Rule A: $\left\{\begin{array}{l}m=1 \\ n=2\end{array} \quad \Longrightarrow 2\right.$ branches
- Rule B: branches start at open-loop poles $\quad s= \pm 1$

Example

$$
L(s)=\frac{s-z_{1}}{s^{2}-1}
$$

- Rule A: $\left\{\begin{array}{l}m=1 \\ n=2\end{array} \quad \Longrightarrow 2\right.$ branches
- Rule B: branches start at open-loop poles $\quad s= \pm 1$
- Rule C:

Example

$$
L(s)=\frac{s-z_{1}}{s^{2}-1}
$$

- Rule A: $\left\{\begin{array}{l}m=1 \\ n=2\end{array} \Longrightarrow 2\right.$ branches
- Rule B: branches start at open-loop poles

$$
\begin{aligned}
& s= \pm 1 \\
& s=z_{1},-\infty
\end{aligned}
$$

- Rule C: branches end at open-loop zeros

Example

$$
L(s)=\frac{s-z_{1}}{s^{2}-1}
$$

- Rule A: $\left\{\begin{array}{l}m=1 \\ n=2\end{array} \Longrightarrow 2\right.$ branches
- Rule B: branches start at open-loop poles

$$
\begin{aligned}
& s= \pm 1 \\
& s=z_{1},-\infty
\end{aligned}
$$

- Rule C: branches end at open-loop zeros (we will see why $-\infty$ later)

Example

$$
L(s)=\frac{s-z_{1}}{s^{2}-1}
$$

- Rule A: $\left\{\begin{array}{l}m=1 \\ n=2\end{array} \Longrightarrow 2\right.$ branches
- Rule B: branches start at open-loop poles

$$
\begin{aligned}
& s= \pm 1 \\
& s=z_{1},-\infty
\end{aligned}
$$

- Rule C: branches end at open-loop zeros (we will see why $-\infty$ later)
So the root locus will look something like this:

$$
L(s)=\frac{s-z_{1}}{s^{2}-1}
$$

$$
L(s)=\frac{s-z_{1}}{s^{2}-1}
$$

Why does one of the branches go off to $-\infty$?

$$
L(s)=\frac{s-z_{1}}{s^{2}-1}
$$

Why does one of the branches go off to $-\infty$?
$s^{2}-1+K\left(s-z_{1}\right)=0$

$$
L(s)=\frac{s-z_{1}}{s^{2}-1}
$$

Why does one of the branches go off to $-\infty$?
$s^{2}-1+K\left(s-z_{1}\right)=0$ $s^{2}+K s-\left(K z_{1}+1\right)=0$

$$
L(s)=\frac{s-z_{1}}{s^{2}-1}
$$

Why does one of the branches go off to $-\infty$?
$s^{2}-1+K\left(s-z_{1}\right)=0$

$$
s^{2}+K s-\left(K z_{1}+1\right)=0
$$

$$
s=-\frac{K}{2} \pm \sqrt{\frac{K^{2}}{4}+K z_{1}+1}, z_{1}<0
$$

$$
L(s)=\frac{s-z_{1}}{s^{2}-1}
$$

Why does one of the branches go off to $-\infty$?
$s^{2}-1+K\left(s-z_{1}\right)=0$

$$
s^{2}+K s-\left(K z_{1}+1\right)=0
$$

$s=-\frac{K}{2} \pm \sqrt{\frac{K^{2}}{4}+K z_{1}+1}, z_{1}<0 \quad$ as $K \rightarrow \infty, s$ will be <0

$$
L(s)=\frac{s-z_{1}}{s^{2}-1}
$$

$$
L(s)=\frac{s-z_{1}}{s^{2}-1}
$$

Is the point $s=0$ on the root locus?

$$
L(s)=\frac{s-z_{1}}{s^{2}-1}
$$

Is the point $s=0$ on the root locus?
Let's see if there is any value $K>0$, for which this is possible:

$$
L(s)=\frac{s-z_{1}}{s^{2}-1}
$$

Is the point $s=0$ on the root locus?
Let's see if there is any value $K>0$, for which this is possible:

$$
1+K L(0)=0
$$

$$
L(s)=\frac{s-z_{1}}{s^{2}-1}
$$

Is the point $s=0$ on the root locus?
Let's see if there is any value $K>0$, for which this is possible:

$$
\begin{aligned}
& 1+K L(0)=0 \\
& 1+K z_{1}=0
\end{aligned}
$$

$$
L(s)=\frac{s-z_{1}}{s^{2}-1}
$$

Is the point $s=0$ on the root locus?
Let's see if there is any value $K>0$, for which this is possible:

$$
\begin{aligned}
& 1+K L(0)=0 \\
& 1+K z_{1}=0 \quad K=-\frac{1}{z_{1}}>0 \text { does the job }
\end{aligned}
$$

From Root Locus to Time Response Specs

For concreteness, let's see what happens when

$$
K_{\mathrm{P}} / K_{\mathrm{D}}=-z_{1}=2 \quad \text { and } \quad K=K_{\mathrm{D}}=5 \Longrightarrow K_{\mathrm{D}}=10
$$

From Root Locus to Time Response Specs

For concreteness, let's see what happens when

$$
K_{\mathrm{P}} / K_{\mathrm{D}}=-z_{1}=2 \quad \text { and } \quad K=K_{\mathrm{D}}=5 \Longrightarrow K_{\mathrm{D}}=10
$$

From Root Locus to Time Response Specs

For concreteness, let's see what happens when

$$
K_{\mathrm{P}} / K_{\mathrm{D}}=-z_{1}=2 \quad \text { and } \quad K=K_{\mathrm{D}}=5 \Longrightarrow K_{\mathrm{D}}=10
$$

$$
G_{c}(s)=10+5 s
$$

From Root Locus to Time Response Specs

For concreteness, let's see what happens when

$$
K_{\mathrm{P}} / K_{\mathrm{D}}=-z_{1}=2 \quad \text { and } \quad K=K_{\mathrm{D}}=5 \Longrightarrow K_{\mathrm{D}}=10
$$

$$
\begin{aligned}
G_{c}(s) & =10+5 s \\
u & =10 e+5 \dot{e}, \quad e=r-y
\end{aligned}
$$

From Root Locus to Time Response Specs

For concreteness, let's see what happens when

$$
K_{\mathrm{P}} / K_{\mathrm{D}}=-z_{1}=2 \quad \text { and } \quad K=K_{\mathrm{D}}=5 \Longrightarrow K_{\mathrm{D}}=10
$$

$$
\begin{aligned}
G_{c}(s) & =10+5 s \\
u & =10 e+5 \dot{e}, \quad e=r-y
\end{aligned}
$$

Characteristic equation: $\quad 1+5\left(\frac{s+2}{s^{2}-1}\right)=0$

From Root Locus to Time Response Specs

For concreteness, let's see what happens when

$$
K_{\mathrm{P}} / K_{\mathrm{D}}=-z_{1}=2 \quad \text { and } \quad K=K_{\mathrm{D}}=5 \Longrightarrow K_{\mathrm{D}}=10
$$

$$
\begin{aligned}
G_{c}(s) & =10+5 s \\
u & =10 e+5 \dot{e}, \quad e=r-y
\end{aligned}
$$

Characteristic equation: $1+5\left(\frac{s+2}{s^{2}-1}\right)=0$

$$
s^{2}+5 s+9=0
$$

From Root Locus to Time Response Specs

For concreteness, let's see what happens when

$$
K_{\mathrm{P}} / K_{\mathrm{D}}=-z_{1}=2 \quad \text { and } \quad K=K_{\mathrm{D}}=5 \Longrightarrow K_{\mathrm{D}}=10
$$

$$
\begin{aligned}
G_{c}(s) & =10+5 s \\
u & =10 e+5 \dot{e}, \quad e=r-y
\end{aligned}
$$

Characteristic equation: $1+5\left(\frac{s+2}{s^{2}-1}\right)=0$

$$
s^{2}+5 s+9=0
$$

Relate to 2nd-order response: $\quad \omega_{n}^{2}=9,2 \zeta \omega_{n}=5 \Longrightarrow \zeta=5 / 6$

Main Points

Main Points

- When zeros are in LHP, high gain can be used to stabilize the system (although one must worry about zeros at infinity).

Main Points

- When zeros are in LHP, high gain can be used to stabilize the system (although one must worry about zeros at infinity).
- If there are zeros in RHP, high gain is always disastrous.

Main Points

- When zeros are in LHP, high gain can be used to stabilize the system (although one must worry about zeros at infinity).
- If there are zeros in RHP, high gain is always disastrous.
- PD control is effective for stabilization because it introduces a zero in LHP.

Main Points

- When zeros are in LHP, high gain can be used to stabilize the system (although one must worry about zeros at infinity).
- If there are zeros in RHP, high gain is always disastrous.
- PD control is effective for stabilization because it introduces a zero in LHP.

But: Rules A-C cannot tell the whole story. How do we know which way the branches go, and which pole corresponds to which zero?

Main Points

- When zeros are in LHP, high gain can be used to stabilize the system (although one must worry about zeros at infinity).
- If there are zeros in RHP, high gain is always disastrous.
- PD control is effective for stabilization because it introduces a zero in LHP.

But: Rules A-C cannot tell the whole story. How do we know which way the branches go, and which pole corresponds to which zero?

Rules D-F!!

Example
Let's consider $\quad L(s)=\frac{s+1}{\left.s(s+2)(s+1)^{2}+1\right)}$

Example
Let's consider $\quad L(s)=\frac{s+1}{\left.s(s+2)(s+1)^{2}+1\right)}$

- Rule A:

Example
Let's consider $\quad L(s)=\frac{s+1}{\left.s(s+2)(s+1)^{2}+1\right)}$

- Rule A: $\left\{\begin{array}{l}m=1 \\ n=4\end{array}\right.$

Example

Let's consider $\quad L(s)=\frac{s+1}{\left.s(s+2)(s+1)^{2}+1\right)}$

- Rule A: $\left\{\begin{array}{l}m=1 \\ n=4\end{array} \Longrightarrow 4\right.$ branches

Example

Let's consider $\quad L(s)=\frac{s+1}{\left.s(s+2)(s+1)^{2}+1\right)}$

- Rule A: $\left\{\begin{array}{l}m=1 \\ n=4\end{array} \Longrightarrow 4\right.$ branches
- Rule B:

Example

Let's consider $\quad L(s)=\frac{s+1}{\left.s(s+2)(s+1)^{2}+1\right)}$

- Rule A: $\left\{\begin{array}{l}m=1 \\ n=4\end{array} \Longrightarrow 4\right.$ branches
- Rule B: branches start at open-loop poles

Example

Let's consider $\quad L(s)=\frac{s+1}{\left.s(s+2)(s+1)^{2}+1\right)}$

- Rule A: $\left\{\begin{array}{l}m=1 \\ n=4\end{array} \Longrightarrow 4\right.$ branches
- Rule B: branches start at open-loop poles

$$
s=0, s=-2, s=-1 \pm j
$$

Example

Let's consider $\quad L(s)=\frac{s+1}{\left.s(s+2)(s+1)^{2}+1\right)}$

- Rule A: $\left\{\begin{array}{l}m=1 \\ n=4\end{array} \Longrightarrow 4\right.$ branches
- Rule B: branches start at open-loop poles

$$
s=0, s=-2, s=-1 \pm j
$$

- Rule C:

Example

Let's consider $\quad L(s)=\frac{s+1}{\left.s(s+2)(s+1)^{2}+1\right)}$

- Rule A: $\left\{\begin{array}{l}m=1 \\ n=4\end{array} \Longrightarrow 4\right.$ branches
- Rule B: branches start at open-loop poles

$$
s=0, s=-2, s=-1 \pm j
$$

- Rule C: branches end at open-loop zeros

Example

Let's consider $\quad L(s)=\frac{s+1}{\left.s(s+2)(s+1)^{2}+1\right)}$

- Rule A: $\left\{\begin{array}{l}m=1 \\ n=4\end{array} \Longrightarrow 4\right.$ branches
- Rule B: branches start at open-loop poles

$$
s=0, s=-2, s=-1 \pm j
$$

- Rule C: branches end at open-loop zeros

$$
s=-1, \pm \infty
$$

Example

Let's consider $\quad L(s)=\frac{s+1}{\left.s(s+2)(s+1)^{2}+1\right)}$

- Rule A: $\left\{\begin{array}{l}m=1 \\ n=4\end{array} \Longrightarrow 4\right.$ branches
- Rule B: branches start at open-loop poles

$$
s=0, s=-2, s=-1 \pm j
$$

- Rule C: branches end at open-loop zeros $s=-1, \pm \infty$

Example, continued

Three more rules:

- Rule D: real locus
- Rule E: asymptotes
- Rule F: $j \omega$-crossings

Example, continued

Three more rules:

- Rule D: real locus
- Rule E: asymptotes
- Rule F: $j \omega$-crossings

Rules D and E are both based on the fact that

$$
1+K L(s)=0 \text { for some } K>0 \quad \Longleftrightarrow \quad L(s)<0
$$

Rule D: Real Locus

The branches of the RL start at the open-loop poles. Which way do they go, left or right?

Rule D: Real Locus

The branches of the RL start at the open-loop poles. Which way do they go, left or right?

Recall the phase condition:

Rule D: Real Locus

The branches of the RL start at the open-loop poles. Which way do they go, left or right?

Recall the phase condition:

$$
1+K L(s)=0 \quad \Longleftrightarrow \quad \angle L(s)=180^{\circ}
$$

Rule D: Real Locus

The branches of the RL start at the open-loop poles. Which way do they go, left or right?

Recall the phase condition:

$$
\begin{aligned}
& 1+K L(s)=0 \quad \Longleftrightarrow \quad \angle L(s)=180^{\circ} \\
& \angle L(s)=\angle \frac{b(s)}{a(s)}
\end{aligned}
$$

Rule D: Real Locus

The branches of the RL start at the open-loop poles. Which way do they go, left or right?

Recall the phase condition:

$$
1+K L(s)=0 \quad \Longleftrightarrow \quad \angle L(s)=180^{\circ}
$$

$$
\begin{aligned}
\angle L(s) & =\angle \frac{b(s)}{a(s)} \\
& =\angle \frac{\left(s-z_{1}\right)\left(s-z_{2}\right) \ldots\left(s-z_{m}\right)}{\left(s-p_{1}\right)\left(s-p_{2}\right) \ldots\left(s-p_{n}\right)}
\end{aligned}
$$

Rule D: Real Locus

The branches of the RL start at the open-loop poles. Which way do they go, left or right?

Recall the phase condition:

$$
1+K L(s)=0 \quad \Longleftrightarrow \quad \angle L(s)=180^{\circ}
$$

$$
\begin{aligned}
\angle L(s) & =\angle \frac{b(s)}{a(s)} \\
& =\angle \frac{\left(s-z_{1}\right)\left(s-z_{2}\right) \ldots\left(s-z_{m}\right)}{\left(s-p_{1}\right)\left(s-p_{2}\right) \ldots\left(s-p_{n}\right)} \\
& =\sum_{i=1}^{m} \angle\left(s-z_{i}\right)-\sum_{j=1}^{n} \angle\left(s-p_{j}\right)
\end{aligned}
$$

Rule D: Real Locus

The branches of the RL start at the open-loop poles. Which way do they go, left or right?

Recall the phase condition:

$$
1+K L(s)=0 \quad \Longleftrightarrow \quad \angle L(s)=180^{\circ}
$$

$$
\begin{aligned}
\angle L(s) & =\angle \frac{b(s)}{a(s)} \\
& =\angle \frac{\left(s-z_{1}\right)\left(s-z_{2}\right) \ldots\left(s-z_{m}\right)}{\left(s-p_{1}\right)\left(s-p_{2}\right) \ldots\left(s-p_{n}\right)} \\
& =\sum_{i=1}^{m} \angle\left(s-z_{i}\right)-\sum_{j=1}^{n} \angle\left(s-p_{j}\right)
\end{aligned}
$$

- this sum must be $\pm 180^{\circ}$ for any s that lies on the RL.

Rule D: Real Locus

So, we try test points:

Rule D: Real Locus

So, we try test points:

$$
\angle\left(s_{1}-z_{1}\right)=0^{\circ} \quad\left(s_{1}>z_{1}\right)
$$

Rule D: Real Locus

So, we try test points:

$$
\begin{aligned}
& \angle\left(s_{1}-z_{1}\right)=0^{\circ} \quad\left(s_{1}>z_{1}\right) \\
& \angle\left(s_{1}-p_{1}\right)=180^{\circ} \quad\left(s_{1}<p_{1}\right)
\end{aligned}
$$

Rule D: Real Locus

So, we try test points:

$$
\begin{aligned}
& \angle\left(s_{1}-z_{1}\right)=0^{\circ} \quad\left(s_{1}>z_{1}\right) \\
& \angle\left(s_{1}-p_{1}\right)=180^{\circ} \quad\left(s_{1}<p_{1}\right) \\
& \angle\left(s_{1}-p_{2}\right)=0^{\circ} \quad\left(s_{1}>p_{2}\right)
\end{aligned}
$$

Rule D: Real Locus

So, we try test points:

$$
\begin{aligned}
& \angle\left(s_{1}-z_{1}\right)=0^{\circ} \quad\left(s_{1}>z_{1}\right) \\
& \angle\left(s_{1}-p_{1}\right)=180^{\circ} \quad\left(s_{1}<p_{1}\right) \\
& \angle\left(s_{1}-p_{2}\right)=0^{\circ} \quad\left(s_{1}>p_{2}\right) \\
& \angle\left(s_{1}-p_{3}\right)=-\angle\left(s_{1}-p_{4}\right) \\
& \text { (conjugate poles cancel) }
\end{aligned}
$$

Rule D: Real Locus

So, we try test points:

$$
\begin{aligned}
& \angle\left(s_{1}-z_{1}\right)=0^{\circ} \quad\left(s_{1}>z_{1}\right) \\
& \angle\left(s_{1}-p_{1}\right)=180^{\circ} \quad\left(s_{1}<p_{1}\right) \\
& \angle\left(s_{1}-p_{2}\right)=0^{\circ} \quad\left(s_{1}>p_{2}\right) \\
& \angle\left(s_{1}-p_{3}\right)=-\angle\left(s_{1}-p_{4}\right) \\
& \text { (conjugate poles cancel) }
\end{aligned}
$$

$$
\angle\left(s_{1}-z_{1}\right)-\left[\angle\left(s_{1}-p_{1}\right)+\angle\left(s_{1}-p_{2}\right)+\angle\left(s_{1}-p_{3}\right)+\angle\left(s_{1}-p_{4}\right)\right]
$$

Rule D: Real Locus

So, we try test points:

$$
\begin{aligned}
& \angle\left(s_{1}-z_{1}\right)=0^{\circ} \quad\left(s_{1}>z_{1}\right) \\
& \angle\left(s_{1}-p_{1}\right)=180^{\circ} \quad\left(s_{1}<p_{1}\right) \\
& \angle\left(s_{1}-p_{2}\right)=0^{\circ} \quad\left(s_{1}>p_{2}\right) \\
& \angle\left(s_{1}-p_{3}\right)=-\angle\left(s_{1}-p_{4}\right) \\
& \text { (conjugate poles cancel) }
\end{aligned}
$$

$$
\begin{aligned}
& \angle\left(s_{1}-z_{1}\right)-\left[\angle\left(s_{1}-p_{1}\right)+\angle\left(s_{1}-p_{2}\right)+\angle\left(s_{1}-p_{3}\right)+\angle\left(s_{1}-p_{4}\right)\right] \\
& \quad=0^{\circ}-\left[180^{\circ}+0^{\circ}+0^{\circ}\right]=-180^{\circ}
\end{aligned}
$$

Rule D: Real Locus

So, we try test points:

$$
\begin{aligned}
& \angle\left(s_{1}-z_{1}\right)=0^{\circ} \quad\left(s_{1}>z_{1}\right) \\
& \angle\left(s_{1}-p_{1}\right)=180^{\circ} \quad\left(s_{1}<p_{1}\right) \\
& \angle\left(s_{1}-p_{2}\right)=0^{\circ} \quad\left(s_{1}>p_{2}\right) \\
& \angle\left(s_{1}-p_{3}\right)=-\angle\left(s_{1}-p_{4}\right) \\
& \text { (conjugate poles cancel) }
\end{aligned}
$$

$$
\begin{aligned}
& \angle\left(s_{1}-z_{1}\right)-\left[\angle\left(s_{1}-p_{1}\right)+\angle\left(s_{1}-p_{2}\right)+\angle\left(s_{1}-p_{3}\right)+\angle\left(s_{1}-p_{4}\right)\right] \\
& \quad=0^{\circ}-\left[180^{\circ}+0^{\circ}+0^{\circ}\right]=-180^{\circ} \quad \checkmark s_{1} \text { is on RL }
\end{aligned}
$$

Rule D: Real Locus

Try more test points:

Rule D: Real Locus

Try more test points:

$$
\angle\left(s_{2}-z_{1}\right)=180^{\circ} \quad\left(s_{2}<z_{2}\right)
$$

Rule D: Real Locus

Try more test points:

$$
\begin{array}{ll}
\angle\left(s_{2}-z_{1}\right) & =180^{\circ} \quad\left(s_{2}<z_{2}\right) \\
\angle\left(s_{2}-p_{1}\right) & =180^{\circ} \\
\left(s_{2}<p_{1}\right)
\end{array}
$$

Rule D: Real Locus

Try more test points:

$$
\begin{aligned}
& \angle\left(s_{2}-z_{1}\right)=180^{\circ} \quad\left(s_{2}<z_{2}\right) \\
& \angle\left(s_{2}-p_{1}\right)=180^{\circ} \quad\left(s_{2}<p_{1}\right) \\
& \angle\left(s_{2}-p_{2}\right)=0^{\circ} \quad\left(s_{2}>p_{2}\right)
\end{aligned}
$$

Rule D: Real Locus

Try more test points:

$$
\begin{aligned}
& \angle\left(s_{2}-z_{1}\right)=180^{\circ} \quad\left(s_{2}<z_{2}\right) \\
& \angle\left(s_{2}-p_{1}\right)=180^{\circ} \quad\left(s_{2}<p_{1}\right) \\
& \angle\left(s_{2}-p_{2}\right)=0^{\circ} \quad\left(s_{2}>p_{2}\right) \\
& \angle\left(s_{2}-p_{3}\right)=-\angle\left(s_{1}-p_{4}\right) \\
& \text { (conjugate poles cancel) }
\end{aligned}
$$

Rule D: Real Locus

Try more test points:

$$
\begin{aligned}
& \angle\left(s_{2}-z_{1}\right)=180^{\circ} \quad\left(s_{2}<z_{2}\right) \\
& \angle\left(s_{2}-p_{1}\right)=180^{\circ} \quad\left(s_{2}<p_{1}\right) \\
& \angle\left(s_{2}-p_{2}\right)=0^{\circ} \quad\left(s_{2}>p_{2}\right) \\
& \angle\left(s_{2}-p_{3}\right)=-\angle\left(s_{1}-p_{4}\right) \\
& \text { (conjugate poles cancel) }
\end{aligned}
$$

$$
\angle\left(s_{2}-z_{1}\right)-\left[\angle\left(s_{2}-p_{1}\right)+\angle\left(s_{2}-p_{2}\right)+\angle\left(s_{2}-p_{3}\right)+\angle\left(s_{2}-p_{4}\right)\right]
$$

Rule D: Real Locus

Try more test points:

$$
\begin{aligned}
& \angle\left(s_{2}-z_{1}\right)=180^{\circ} \quad\left(s_{2}<z_{2}\right) \\
& \angle\left(s_{2}-p_{1}\right)=180^{\circ} \quad\left(s_{2}<p_{1}\right) \\
& \angle\left(s_{2}-p_{2}\right)=0^{\circ} \quad\left(s_{2}>p_{2}\right) \\
& \angle\left(s_{2}-p_{3}\right)=-\angle\left(s_{1}-p_{4}\right) \\
& \text { (conjugate poles cancel) }
\end{aligned}
$$

$$
\begin{aligned}
& \angle\left(s_{2}-z_{1}\right)-\left[\angle\left(s_{2}-p_{1}\right)+\angle\left(s_{2}-p_{2}\right)+\angle\left(s_{2}-p_{3}\right)+\angle\left(s_{2}-p_{4}\right)\right] \\
& \quad=180^{\circ}-\left[180^{\circ}+0^{\circ}+0^{\circ}\right]=0^{\circ}
\end{aligned}
$$

Rule D: Real Locus

Try more test points:

$$
\begin{aligned}
& \angle\left(s_{2}-z_{1}\right)=180^{\circ} \quad\left(s_{2}<z_{2}\right) \\
& \angle\left(s_{2}-p_{1}\right)=180^{\circ} \quad\left(s_{2}<p_{1}\right) \\
& \angle\left(s_{2}-p_{2}\right)=0^{\circ} \quad\left(s_{2}>p_{2}\right) \\
& \angle\left(s_{2}-p_{3}\right)=-\angle\left(s_{1}-p_{4}\right) \\
& \text { (conjugate poles cancel) }
\end{aligned}
$$

$$
\begin{aligned}
& \angle\left(s_{2}-z_{1}\right)-\left[\angle\left(s_{2}-p_{1}\right)+\angle\left(s_{2}-p_{2}\right)+\angle\left(s_{2}-p_{3}\right)+\angle\left(s_{2}-p_{4}\right)\right] \\
& \quad=180^{\circ}-\left[180^{\circ}+0^{\circ}+0^{\circ}\right]=0^{\circ} \quad \times s_{1} \text { is not on RL }
\end{aligned}
$$

Rule D: Real Locus

Rule D: If s is real, then it is on the RL of $1+K L$ if and only if there are an odd number of real open-loop poles and zeros to the right of s.

Rule D: Real Locus

Rule D : If s is real, then it is on the RL of $1+K L$ if and only if there are an odd number of real open-loop poles and zeros to the right of s.

Rule D: Real Locus

Rule D : If s is real, then it is on the RL of $1+K L$ if and only if there are an odd number of real open-loop poles and zeros to the right of s.

We will cover Rules E and F, and complete the RL for this example, in the next lecture.

