
Plan of the Lecture

I Review: transient response specs (rise time, overshoot,
settling time)

I Today’s topic: effect of zeros and extra poles;
Routh–Hurwitz stability criterion

Goal: understand the effect of zeros and high-order poles on the
shape of transient response; discuss relation with stability;
formulate and learn how to apply the Routh–Hurwtiz stability
criterion.

Reading: FPE, Sections 3.5–3.6

Plan of the Lecture

I Review: transient response specs (rise time, overshoot,
settling time)

I Today’s topic: effect of zeros and extra poles;
Routh–Hurwitz stability criterion

Goal: understand the effect of zeros and high-order poles on the
shape of transient response; discuss relation with stability;
formulate and learn how to apply the Routh–Hurwtiz stability
criterion.

Reading: FPE, Sections 3.5–3.6

Plan of the Lecture

I Review: transient response specs (rise time, overshoot,
settling time)

I Today’s topic: effect of zeros and extra poles;
Routh–Hurwitz stability criterion

Goal: understand the effect of zeros and high-order poles on the
shape of transient response; discuss relation with stability;
formulate and learn how to apply the Routh–Hurwtiz stability
criterion.

Reading: FPE, Sections 3.5–3.6

Effect of Zeros on the Transient Response

Reminder: for H(s) =
q(s)

p(s)
, zeros are the roots of q(s) = 0

Example: start with H1(s) =
1

s2 + 2ζs+ 1
(ωn = 1)

Let’s add a zero at s = −a, a > 0 – LHP zero

To keep DC gain = 1, let’s take the numerator to be
s

a
+ 1:

H2(s) =
s
a + 1

s2 + 2ζs+ 1

=
1

s2 + 2ζs+ 1︸ ︷︷ ︸
this is H1(s)

+
1

a
· s

s2 + 2ζs+ 1︸ ︷︷ ︸
call this Hd(s)

= H1(s) +
1

a
Hd(s), Hd(s) = sH1(s)

Effect of Zeros on the Transient Response

Reminder: for H(s) =
q(s)

p(s)
, zeros are the roots of q(s) = 0

Example: start with H1(s) =
1

s2 + 2ζs+ 1
(ωn = 1)

Let’s add a zero at s = −a, a > 0 – LHP zero

To keep DC gain = 1, let’s take the numerator to be
s

a
+ 1:

H2(s) =
s
a + 1

s2 + 2ζs+ 1

=
1

s2 + 2ζs+ 1︸ ︷︷ ︸
this is H1(s)

+
1

a
· s

s2 + 2ζs+ 1︸ ︷︷ ︸
call this Hd(s)

= H1(s) +
1

a
Hd(s), Hd(s) = sH1(s)

Effect of Zeros on the Transient Response

Reminder: for H(s) =
q(s)

p(s)
, zeros are the roots of q(s) = 0

Example: start with H1(s) =
1

s2 + 2ζs+ 1
(ωn = 1)

Let’s add a zero at s = −a, a > 0 – LHP zero

To keep DC gain = 1, let’s take the numerator to be
s

a
+ 1:

H2(s) =
s
a + 1

s2 + 2ζs+ 1

=
1

s2 + 2ζs+ 1︸ ︷︷ ︸
this is H1(s)

+
1

a
· s

s2 + 2ζs+ 1︸ ︷︷ ︸
call this Hd(s)

= H1(s) +
1

a
Hd(s), Hd(s) = sH1(s)

Effect of Zeros on the Transient Response

Reminder: for H(s) =
q(s)

p(s)
, zeros are the roots of q(s) = 0

Example: start with H1(s) =
1

s2 + 2ζs+ 1
(ωn = 1)

Let’s add a zero at s = −a, a > 0 – LHP zero

To keep DC gain = 1, let’s take the numerator to be
s

a
+ 1:

H2(s) =
s
a + 1

s2 + 2ζs+ 1

=
1

s2 + 2ζs+ 1︸ ︷︷ ︸
this is H1(s)

+
1

a
· s

s2 + 2ζs+ 1︸ ︷︷ ︸
call this Hd(s)

= H1(s) +
1

a
Hd(s), Hd(s) = sH1(s)

Effect of Zeros on the Transient Response

Reminder: for H(s) =
q(s)

p(s)
, zeros are the roots of q(s) = 0

Example: start with H1(s) =
1

s2 + 2ζs+ 1
(ωn = 1)

Let’s add a zero at s = −a, a > 0 – LHP zero

To keep DC gain = 1, let’s take the numerator to be
s

a
+ 1:

H2(s) =
s
a + 1

s2 + 2ζs+ 1

=
1

s2 + 2ζs+ 1︸ ︷︷ ︸
this is H1(s)

+
1

a
· s

s2 + 2ζs+ 1︸ ︷︷ ︸
call this Hd(s)

= H1(s) +
1

a
Hd(s), Hd(s) = sH1(s)

Effect of Zeros on the Transient Response

Reminder: for H(s) =
q(s)

p(s)
, zeros are the roots of q(s) = 0

Example: start with H1(s) =
1

s2 + 2ζs+ 1
(ωn = 1)

Let’s add a zero at s = −a, a > 0 – LHP zero

To keep DC gain = 1, let’s take the numerator to be
s

a
+ 1:

H2(s) =
s
a + 1

s2 + 2ζs+ 1

=
1

s2 + 2ζs+ 1︸ ︷︷ ︸
this is H1(s)

+
1

a
· s

s2 + 2ζs+ 1︸ ︷︷ ︸
call this Hd(s)

= H1(s) +
1

a
Hd(s), Hd(s) = sH1(s)

Effect of Zeros on the Transient Response

Reminder: for H(s) =
q(s)

p(s)
, zeros are the roots of q(s) = 0

Example: start with H1(s) =
1

s2 + 2ζs+ 1
(ωn = 1)

Let’s add a zero at s = −a, a > 0 – LHP zero

To keep DC gain = 1, let’s take the numerator to be
s

a
+ 1:

H2(s) =
s
a + 1

s2 + 2ζs+ 1

=
1

s2 + 2ζs+ 1︸ ︷︷ ︸
this is H1(s)

+
1

a
· s

s2 + 2ζs+ 1︸ ︷︷ ︸
call this Hd(s)

= H1(s) +
1

a
Hd(s), Hd(s) = sH1(s)

Effect of a LHP Zero

H1(s) =
1

s2 + 2ζs+ 1

add zero at s = −a−−−−−−−−−−−−→ H2(s) = H1(s) +
1

a
· sH1(s)

Step response:

Y1(s) =
H1(s)

s

Y2(s) =
H2(s)

s

=
H1(s)

s
+

1

a

sH1(s)

s

= Y1(s) +
1

a
sY1(s)

y2(t) = L −1{Y2(s)} = L −1
{
Y1(s) +

1

a
· sY1(s)

}
= y1(t) +

1

a
ẏ1(t)

(assuming zero initial conditions)

Effect of a LHP Zero

H1(s) =
1

s2 + 2ζs+ 1

add zero at s = −a−−−−−−−−−−−−→ H2(s) = H1(s) +
1

a
· sH1(s)

Step response:

Y1(s) =
H1(s)

s

Y2(s) =
H2(s)

s

=
H1(s)

s
+

1

a

sH1(s)

s

= Y1(s) +
1

a
sY1(s)

y2(t) = L −1{Y2(s)} = L −1
{
Y1(s) +

1

a
· sY1(s)

}
= y1(t) +

1

a
ẏ1(t)

(assuming zero initial conditions)

Effect of a LHP Zero

H1(s) =
1

s2 + 2ζs+ 1

add zero at s = −a−−−−−−−−−−−−→ H2(s) = H1(s) +
1

a
· sH1(s)

Step response:

Y1(s) =
H1(s)

s

Y2(s) =
H2(s)

s

=
H1(s)

s
+

1

a

sH1(s)

s

= Y1(s) +
1

a
sY1(s)

y2(t) = L −1{Y2(s)} = L −1
{
Y1(s) +

1

a
· sY1(s)

}
= y1(t) +

1

a
ẏ1(t)

(assuming zero initial conditions)

Effect of a LHP Zero

H1(s) =
1

s2 + 2ζs+ 1

add zero at s = −a−−−−−−−−−−−−→ H2(s) = H1(s) +
1

a
· sH1(s)

Step response:

Y1(s) =
H1(s)

s

Y2(s) =
H2(s)

s

=
H1(s)

s
+

1

a

sH1(s)

s

= Y1(s) +
1

a
sY1(s)

y2(t) = L −1{Y2(s)} = L −1
{
Y1(s) +

1

a
· sY1(s)

}
= y1(t) +

1

a
ẏ1(t)

(assuming zero initial conditions)

Effect of a LHP Zero

H1(s) =
1

s2 + 2ζs+ 1

add zero at s = −a−−−−−−−−−−−−→ H2(s) = H1(s) +
1

a
· sH1(s)

Step response:

Y1(s) =
H1(s)

s

Y2(s) =
H2(s)

s

=
H1(s)

s
+

1

a

sH1(s)

s

= Y1(s) +
1

a
sY1(s)

y2(t) = L −1{Y2(s)} = L −1
{
Y1(s) +

1

a
· sY1(s)

}
= y1(t) +

1

a
ẏ1(t)

(assuming zero initial conditions)

Effect of a LHP Zero

H1(s) =
1

s2 + 2ζs+ 1

add zero at s = −a−−−−−−−−−−−−→ H2(s) = H1(s) +
1

a
· sH1(s)

Step response:

Y1(s) =
H1(s)

s

Y2(s) =
H2(s)

s

=
H1(s)

s
+

1

a

sH1(s)

s

= Y1(s) +
1

a
sY1(s)

y2(t) = L −1{Y2(s)} = L −1
{
Y1(s) +

1

a
· sY1(s)

}
= y1(t) +

1

a
ẏ1(t)

(assuming zero initial conditions)

Effect of a LHP Zero

H1(s) =
1

s2 + 2ζs+ 1

add zero at s = −a−−−−−−−−−−−−→ H2(s) = H1(s) +
1

a
· sH1(s)

Step response:

Y1(s) =
H1(s)

s

Y2(s) =
H2(s)

s

=
H1(s)

s
+

1

a

sH1(s)

s

= Y1(s) +
1

a
sY1(s)

y2(t) = L −1{Y2(s)} = L −1
{
Y1(s) +

1

a
· sY1(s)

}
= y1(t) +

1

a
ẏ1(t)

(assuming zero initial conditions)

Effect of a LHP Zero
Step response (zero at s = −a)

y2(t) = y1(t) +
1

a
ẏ1(t) where y1(t) = original step response

y1
y† 1
y2

2 4 6 8 10 12 14
t

0.5

1.0

1.5

Effects of a LHP zero:
I increased overshoot (major effect)
I little influence on settling time
I what happens as a→∞? — effects become less significant

Effect of a LHP Zero
Step response (zero at s = −a)

y2(t) = y1(t) +
1

a
ẏ1(t) where y1(t) = original step response

y1
y† 1
y2

2 4 6 8 10 12 14
t

0.5

1.0

1.5

Effects of a LHP zero:
I increased overshoot (major effect)
I little influence on settling time
I what happens as a→∞? — effects become less significant

Effect of a LHP Zero
Step response (zero at s = −a)

y2(t) = y1(t) +
1

a
ẏ1(t) where y1(t) = original step response

y1
y† 1
y2

2 4 6 8 10 12 14
t

0.5

1.0

1.5

Effects of a LHP zero:
I increased overshoot (major effect)
I little influence on settling time
I what happens as a→∞?

— effects become less significant

Effect of a LHP Zero
Step response (zero at s = −a)

y2(t) = y1(t) +
1

a
ẏ1(t) where y1(t) = original step response

y1
y† 1
y2

2 4 6 8 10 12 14
t

0.5

1.0

1.5

Effects of a LHP zero:
I increased overshoot (major effect)
I little influence on settling time
I what happens as a→∞? — effects become less significant

What About a RHP Zero?

H1(s) =
1

s2 + 2ζs+ 1

add zero at s = a−−−−−−−−−−→ H2(s) = H1(s)−
1

a
· sH1(s)

y2(t) = y1(t)−
1

a
· ẏ1(t)

y1
-y† 1
y2

2 4 6 8 10 12 14
t

-0.5

0.5

1.0

1.5

Effects of a RHP zero:

I slows down (delays) the response

I creates undershoot (at least, when a is small enough)

What About a RHP Zero?

H1(s) =
1

s2 + 2ζs+ 1

add zero at s = a−−−−−−−−−−→ H2(s) = H1(s)−
1

a
· sH1(s)

y2(t) = y1(t)−
1

a
· ẏ1(t)

y1
-y† 1
y2

2 4 6 8 10 12 14
t

-0.5

0.5

1.0

1.5

Effects of a RHP zero:

I slows down (delays) the response

I creates undershoot (at least, when a is small enough)

What About a RHP Zero?

H1(s) =
1

s2 + 2ζs+ 1

add zero at s = a−−−−−−−−−−→ H2(s) = H1(s)−
1

a
· sH1(s)

y2(t) = y1(t)−
1

a
· ẏ1(t)

y1
-y† 1
y2

2 4 6 8 10 12 14
t

-0.5

0.5

1.0

1.5

Effects of a RHP zero:

I slows down (delays) the response

I creates undershoot (at least, when a is small enough)

Effect of Extra Poles

A general nth-order system has n poles

Re

Im

0

dominant
poles

I extra LHP poles are not
significant if their real parts
are at least 5× the real parts
of dominant LHP poles

I e.g., if dominant poles have
Re(s) = −2 and we have
extra poles with Re(s) = −10,
their time-domain
contributions will be e−2t and
e−10t � e−2t

I 5× is just a convention, but
we can really see the effect of
extra poles that are closer
(cf. Lab 2)

Effect of Pole Locations

Re

Im

0

I poles in open LHP (Re(s) < 0) — stable response

I poles in open RHP (Re(s) > 0) — unstable response

I poles on the imaginary axis (Re(s) = 0) — tricky case

Marginal Case: Poles on the Imaginary Axis

Let’s consider the case of a pole at the origin: H(s) =
1

s

Is this a stable system?

I impulse response: Y (s) =
1

s
=⇒ y(t) = 1(t) (OK)

I step respone: Y (s) =
1

s2
=⇒ y(t) = t, t ≥ 0 — unit ramp!!

What about purely imaginary poles? H(s) =
ω2

s2 + ω2

I impulse response: Y (s) =
ω2

s2 + ω2
=⇒ y(t) = ω sin(ωt)

I step respone: Y (s) =
ω2

s(s2 + ω2)
=⇒ y(t) = 1− cos(ωt)

Systems with poles on the imaginary axis are not stable.

Marginal Case: Poles on the Imaginary Axis

Let’s consider the case of a pole at the origin: H(s) =
1

s

Is this a stable system?

I impulse response: Y (s) =
1

s
=⇒ y(t) = 1(t) (OK)

I step respone: Y (s) =
1

s2
=⇒ y(t) = t, t ≥ 0 — unit ramp!!

What about purely imaginary poles? H(s) =
ω2

s2 + ω2

I impulse response: Y (s) =
ω2

s2 + ω2
=⇒ y(t) = ω sin(ωt)

I step respone: Y (s) =
ω2

s(s2 + ω2)
=⇒ y(t) = 1− cos(ωt)

Systems with poles on the imaginary axis are not stable.

Marginal Case: Poles on the Imaginary Axis

Let’s consider the case of a pole at the origin: H(s) =
1

s

Is this a stable system?

I impulse response: Y (s) =
1

s
=⇒ y(t) = 1(t) (OK)

I step respone: Y (s) =
1

s2
=⇒ y(t) = t, t ≥ 0 — unit ramp!!

What about purely imaginary poles? H(s) =
ω2

s2 + ω2

I impulse response: Y (s) =
ω2

s2 + ω2
=⇒ y(t) = ω sin(ωt)

I step respone: Y (s) =
ω2

s(s2 + ω2)
=⇒ y(t) = 1− cos(ωt)

Systems with poles on the imaginary axis are not stable.

Marginal Case: Poles on the Imaginary Axis

Let’s consider the case of a pole at the origin: H(s) =
1

s

Is this a stable system?

I impulse response: Y (s) =
1

s
=⇒ y(t) = 1(t) (OK)

I step respone: Y (s) =
1

s2
=⇒ y(t) = t, t ≥ 0 — unit ramp!!

What about purely imaginary poles? H(s) =
ω2

s2 + ω2

I impulse response: Y (s) =
ω2

s2 + ω2
=⇒ y(t) = ω sin(ωt)

I step respone: Y (s) =
ω2

s(s2 + ω2)
=⇒ y(t) = 1− cos(ωt)

Systems with poles on the imaginary axis are not stable.

Marginal Case: Poles on the Imaginary Axis

Let’s consider the case of a pole at the origin: H(s) =
1

s

Is this a stable system?

I impulse response: Y (s) =
1

s
=⇒ y(t) = 1(t) (OK)

I step respone: Y (s) =
1

s2
=⇒ y(t) = t, t ≥ 0 — unit ramp!!

What about purely imaginary poles? H(s) =
ω2

s2 + ω2

I impulse response: Y (s) =
ω2

s2 + ω2
=⇒ y(t) = ω sin(ωt)

I step respone: Y (s) =
ω2

s(s2 + ω2)
=⇒ y(t) = 1− cos(ωt)

Systems with poles on the imaginary axis are not stable.

Marginal Case: Poles on the Imaginary Axis

Let’s consider the case of a pole at the origin: H(s) =
1

s

Is this a stable system?

I impulse response: Y (s) =
1

s
=⇒ y(t) = 1(t) (OK)

I step respone: Y (s) =
1

s2
=⇒ y(t) = t, t ≥ 0 — unit ramp!!

What about purely imaginary poles? H(s) =
ω2

s2 + ω2

I impulse response: Y (s) =
ω2

s2 + ω2
=⇒ y(t) = ω sin(ωt)

I step respone: Y (s) =
ω2

s(s2 + ω2)
=⇒ y(t) = 1− cos(ωt)

Systems with poles on the imaginary axis are not stable.

What Is Stability?

u yh

One reasonable definition is as follows:

A linear time-invariant system is Bounded-Input,
Bounded-Output (BIBO) stable provided either one of the
following three equivalent conditions is satisfied:

1. If every bounded input u(t) results in a bounded output
y(t), regardless of initial conditions.

2. If the impulse response h(t) is absolutely integrable:∫ ∞
−∞
|h(t)|dt <∞.

3. If all poles of the transfer function H(s) are strictly stable
(lie in open LHP).

Checking for Stability?

Consider a general transfer function:

H(s) =
q(s)

p(s)

where q and p are polynomials, and deg(q) ≤ deg(p).

We need tools for checking stability: whether or not all roots of
p(s) = 0 lie in OLHP.

For simple polynomials, can just factor them “by inspection”
and find roots.

Now, this is hard to do for high-degree polynomials — it’s
computationally intensive, especially symbolically.

But: often we don’t need to know precise pole locations, just
need to know that they are strictly stable.

Checking for Stability?

Consider a general transfer function:

H(s) =
q(s)

p(s)

where q and p are polynomials, and deg(q) ≤ deg(p).

We need tools for checking stability: whether or not all roots of
p(s) = 0 lie in OLHP.

For simple polynomials, can just factor them “by inspection”
and find roots.

Now, this is hard to do for high-degree polynomials — it’s
computationally intensive, especially symbolically.

But: often we don’t need to know precise pole locations, just
need to know that they are strictly stable.

Checking for Stability?

Consider a general transfer function:

H(s) =
q(s)

p(s)

where q and p are polynomials, and deg(q) ≤ deg(p).

We need tools for checking stability: whether or not all roots of
p(s) = 0 lie in OLHP.

For simple polynomials, can just factor them “by inspection”
and find roots.

Now, this is hard to do for high-degree polynomials — it’s
computationally intensive, especially symbolically.

But: often we don’t need to know precise pole locations, just
need to know that they are strictly stable.

Checking for Stability?

Consider a general transfer function:

H(s) =
q(s)

p(s)

where q and p are polynomials, and deg(q) ≤ deg(p).

We need tools for checking stability: whether or not all roots of
p(s) = 0 lie in OLHP.

For simple polynomials, can just factor them “by inspection”
and find roots.

Now, this is hard to do for high-degree polynomials — it’s
computationally intensive, especially symbolically.

But: often we don’t need to know precise pole locations, just
need to know that they are strictly stable.

Checking for Stability?

Consider a general transfer function:

H(s) =
q(s)

p(s)

where q and p are polynomials, and deg(q) ≤ deg(p).

We need tools for checking stability: whether or not all roots of
p(s) = 0 lie in OLHP.

For simple polynomials, can just factor them “by inspection”
and find roots.

Now, this is hard to do for high-degree polynomials — it’s
computationally intensive, especially symbolically.

But: often we don’t need to know precise pole locations, just
need to know that they are strictly stable.

Checking for Stability

Problem: given an nth-degree polynomial

p(s) = sn + a1s
n−1 + a2s

n−2 + . . .+ an−1s+ an

with real coefficients, check that the roots of the equation
p(s) = 0 are strictly stable (i.e., have negative real parts).

Terminology: we often say that the polynomial p is (strictly)
stable if all of its roots are.

Checking for Stability

Problem: given an nth-degree polynomial

p(s) = sn + a1s
n−1 + a2s

n−2 + . . .+ an−1s+ an

with real coefficients, check that the roots of the equation
p(s) = 0 are strictly stable (i.e., have negative real parts).

Terminology: we often say that the polynomial p is (strictly)
stable if all of its roots are.

A Necessary Condition for Stability

Terminology: we say that A is a necessary condition for B if

A is false =⇒ B is false

Important!! Even if A is true, B may still be false.

Necessary condition for stability: a polynomial p is strictly
stable only if all of its coefficients are strictly positive.

Proof: suppose that p has roots at r1, r2, . . . , rn with Re(ri) < 0
for all i. Then

p(s) = (s− r1)(s− r2) . . . (s− rn)

— multiply this out and check that all coefficients are positive.

A Necessary Condition for Stability

Terminology: we say that A is a necessary condition for B if

A is false =⇒ B is false

Important!! Even if A is true, B may still be false.

Necessary condition for stability: a polynomial p is strictly
stable only if all of its coefficients are strictly positive.

Proof: suppose that p has roots at r1, r2, . . . , rn with Re(ri) < 0
for all i. Then

p(s) = (s− r1)(s− r2) . . . (s− rn)

— multiply this out and check that all coefficients are positive.

A Necessary Condition for Stability

Terminology: we say that A is a necessary condition for B if

A is false =⇒ B is false

Important!! Even if A is true, B may still be false.

Necessary condition for stability: a polynomial p is strictly
stable only if all of its coefficients are strictly positive.

Proof: suppose that p has roots at r1, r2, . . . , rn with Re(ri) < 0
for all i. Then

p(s) = (s− r1)(s− r2) . . . (s− rn)

— multiply this out and check that all coefficients are positive.

A Necessary Condition for Stability

Terminology: we say that A is a necessary condition for B if

A is false =⇒ B is false

Important!! Even if A is true, B may still be false.

Necessary condition for stability: a polynomial p is strictly
stable only if all of its coefficients are strictly positive.

Proof: suppose that p has roots at r1, r2, . . . , rn with Re(ri) < 0
for all i. Then

p(s) = (s− r1)(s− r2) . . . (s− rn)

— multiply this out and check that all coefficients are positive.

Routh–Hurwitz Criterion
Necessary & Sufficient Condition for Stability

Terminology: we say that A is a sufficient condition for B if

A is true =⇒ B is true

Thus, A is a necessary and sufficient condition for B if

A is true ⇐⇒ B is true

— we also say that A is true if and only if (iff) B is true.

We will now introduce a necessary and sufficient condition for
stability: the Routh–Hurwitz Criterion.

Routh–Hurwitz Criterion
Necessary & Sufficient Condition for Stability

Terminology: we say that A is a sufficient condition for B if

A is true =⇒ B is true

Thus, A is a necessary and sufficient condition for B if

A is true ⇐⇒ B is true

— we also say that A is true if and only if (iff) B is true.

We will now introduce a necessary and sufficient condition for
stability: the Routh–Hurwitz Criterion.

Routh–Hurwitz Criterion
Necessary & Sufficient Condition for Stability

Terminology: we say that A is a sufficient condition for B if

A is true =⇒ B is true

Thus, A is a necessary and sufficient condition for B if

A is true ⇐⇒ B is true

— we also say that A is true if and only if (iff) B is true.

We will now introduce a necessary and sufficient condition for
stability: the Routh–Hurwitz Criterion.

Routh–Hurwitz Criterion: A Bit of History

J.C. Maxwell, “On governors,” Proc. Royal
Society, no. 100, 1868

... [Stability of the governor] is mathematically
equivalent to the condition that all the possible
roots, and all the possible parts of the impossible
roots, of a certain equation shall be negative. ...

I have not been able completely to determine
these conditions for equations of a higher degree
than the third; but I hope that the subject will
obtain the attention of mathematicians.

In 1877, Maxwell was one of the judges for the Adams Prize, a
biennial competition for best essay on a scientific topic. The
topic that year was stability of motion. The prize went to
Edward John Routh, who solved the problem posed by Maxwell
in 1868.

In 1893, Adolf Hurwitz solved the same problem, using a
different method, independently of Routh.

Routh–Hurwitz Criterion: A Bit of History

J.C. Maxwell, “On governors,” Proc. Royal
Society, no. 100, 1868

... [Stability of the governor] is mathematically
equivalent to the condition that all the possible
roots, and all the possible parts of the impossible
roots, of a certain equation shall be negative. ...

I have not been able completely to determine
these conditions for equations of a higher degree
than the third; but I hope that the subject will
obtain the attention of mathematicians.

In 1877, Maxwell was one of the judges for the Adams Prize, a
biennial competition for best essay on a scientific topic. The
topic that year was stability of motion. The prize went to
Edward John Routh, who solved the problem posed by Maxwell
in 1868.

In 1893, Adolf Hurwitz solved the same problem, using a
different method, independently of Routh.

Routh–Hurwitz Criterion: A Bit of History

J.C. Maxwell, “On governors,” Proc. Royal
Society, no. 100, 1868

... [Stability of the governor] is mathematically
equivalent to the condition that all the possible
roots, and all the possible parts of the impossible
roots, of a certain equation shall be negative. ...

I have not been able completely to determine
these conditions for equations of a higher degree
than the third; but I hope that the subject will
obtain the attention of mathematicians.

In 1877, Maxwell was one of the judges for the Adams Prize, a
biennial competition for best essay on a scientific topic. The
topic that year was stability of motion. The prize went to
Edward John Routh, who solved the problem posed by Maxwell
in 1868.

In 1893, Adolf Hurwitz solved the same problem, using a
different method, independently of Routh.

Edward John Routh, 1831–1907 Adolf Hurwitz, 1859–1919

Routh’s Test

Problem: check whether the polynomial

p(s) = sn + a1s
n−1 + a2s

n−2 + . . .+ an−1s+ an

is strictly stable.

We begin by forming the Routh array using the coefficients of p:

sn : 1 a2 a4 a6 . . .
sn−1 : a1 a3 a5 a7 . . .

(if necessary, add zeros in the

second row to match lengths)

Note that the very first entry is always 1, and also note the
order in which the coefficients are filled in.

Routh’s Test

Problem: check whether the polynomial

p(s) = sn + a1s
n−1 + a2s

n−2 + . . .+ an−1s+ an

is strictly stable.

We begin by forming the Routh array using the coefficients of p:

sn : 1 a2 a4 a6 . . .
sn−1 : a1 a3 a5 a7 . . .

(if necessary, add zeros in the

second row to match lengths)

Note that the very first entry is always 1, and also note the
order in which the coefficients are filled in.

Routh’s Test

Problem: check whether the polynomial

p(s) = sn + a1s
n−1 + a2s

n−2 + . . .+ an−1s+ an

is strictly stable.

We begin by forming the Routh array using the coefficients of p:

sn : 1 a2 a4 a6 . . .
sn−1 : a1 a3 a5 a7 . . .

(if necessary, add zeros in the

second row to match lengths)

Note that the very first entry is always 1, and also note the
order in which the coefficients are filled in.

Routh’s Test

sn : 1 a2 a4 a6 . . .
sn−1 : a1 a3 a5 a7 . . .

sn−2 : b1 b2 b3 . . .

Next, we form the third row marked by sn−2:

sn−2 : b1 b2 b3 . . .

where b1 = − 1

a1
det

(
1 a2
a1 a3

)
= − 1

a1
(a3 − a1a2)

b2 = − 1

a1
det

(
1 a4
a1 a5

)
= − 1

a1
(a5 − a1a4)

b3 = − 1

a1
det

(
1 a6
a1 a7

)
= − 1

a1
(a7 − a1a6) and so on ...

Note: the new row is 1 element shorter than the one above it

Routh’s Test

sn : 1 a2 a4 a6 . . .
sn−1 : a1 a3 a5 a7 . . .

sn−2 : b1 b2 b3 . . .

Next, we form the third row marked by sn−2:

sn−2 : b1 b2 b3 . . .

where

b1 = − 1

a1
det

(
1 a2
a1 a3

)
= − 1

a1
(a3 − a1a2)

b2 = − 1

a1
det

(
1 a4
a1 a5

)
= − 1

a1
(a5 − a1a4)

b3 = − 1

a1
det

(
1 a6
a1 a7

)
= − 1

a1
(a7 − a1a6) and so on ...

Note: the new row is 1 element shorter than the one above it

Routh’s Test

sn : 1 a2 a4 a6 . . .
sn−1 : a1 a3 a5 a7 . . .

sn−2 : b1 b2 b3 . . .

Next, we form the third row marked by sn−2:

sn−2 : b1 b2 b3 . . .

where b1 = − 1

a1
det

(
1 a2
a1 a3

)
= − 1

a1
(a3 − a1a2)

b2 = − 1

a1
det

(
1 a4
a1 a5

)
= − 1

a1
(a5 − a1a4)

b3 = − 1

a1
det

(
1 a6
a1 a7

)
= − 1

a1
(a7 − a1a6) and so on ...

Note: the new row is 1 element shorter than the one above it

Routh’s Test

sn : 1 a2 a4 a6 . . .
sn−1 : a1 a3 a5 a7 . . .

sn−2 : b1 b2 b3 . . .

Next, we form the third row marked by sn−2:

sn−2 : b1 b2 b3 . . .

where b1 = − 1

a1
det

(
1 a2
a1 a3

)
= − 1

a1
(a3 − a1a2)

b2 = − 1

a1
det

(
1 a4
a1 a5

)
= − 1

a1
(a5 − a1a4)

b3 = − 1

a1
det

(
1 a6
a1 a7

)
= − 1

a1
(a7 − a1a6) and so on ...

Note: the new row is 1 element shorter than the one above it

Routh’s Test

sn : 1 a2 a4 a6 . . .
sn−1 : a1 a3 a5 a7 . . .

sn−2 : b1 b2 b3 . . .

Next, we form the third row marked by sn−2:

sn−2 : b1 b2 b3 . . .

where b1 = − 1

a1
det

(
1 a2
a1 a3

)
= − 1

a1
(a3 − a1a2)

b2 = − 1

a1
det

(
1 a4
a1 a5

)
= − 1

a1
(a5 − a1a4)

b3 = − 1

a1
det

(
1 a6
a1 a7

)
= − 1

a1
(a7 − a1a6) and so on ...

Note: the new row is 1 element shorter than the one above it

Routh’s Test

sn : 1 a2 a4 a6 . . .
sn−1 : a1 a3 a5 a7 . . .

sn−2 : b1 b2 b3 . . .

Next, we form the third row marked by sn−2:

sn−2 : b1 b2 b3 . . .

where b1 = − 1

a1
det

(
1 a2
a1 a3

)
= − 1

a1
(a3 − a1a2)

b2 = − 1

a1
det

(
1 a4
a1 a5

)
= − 1

a1
(a5 − a1a4)

b3 = − 1

a1
det

(
1 a6
a1 a7

)
= − 1

a1
(a7 − a1a6) and so on ...

Note: the new row is 1 element shorter than the one above it

Routh’s Test

sn : 1 a2 a4 a6 . . .
sn−1 : a1 a3 a5 a7 . . .
sn−2 : b1 b2 b3 . . .

Next, we form the third row marked by sn−2:

sn−2 : b1 b2 b3 . . .

where b1 = − 1

a1
det

(
1 a2
a1 a3

)
= − 1

a1
(a3 − a1a2)

b2 = − 1

a1
det

(
1 a4
a1 a5

)
= − 1

a1
(a5 − a1a4)

b3 = − 1

a1
det

(
1 a6
a1 a7

)
= − 1

a1
(a7 − a1a6) and so on ...

Note: the new row is 1 element shorter than the one above it

Routh’s Test, continued

sn : 1 a2 a4 a6 . . .
sn−1 : a1 a3 a5 a7 . . .
sn−2 : b1 b2 b3 . . .

sn−3 : c1 c2 . . .

Next, we form the fourth row marked by sn−3:

sn−3 : c1 c2 . . .

where c1 = − 1

b1
det

(
a1 a3
b1 b2

)
= − 1

b1
(a1b2 − a3b1)

c2 = − 1

b1
det

(
a1 a5
b1 b3

)
= − 1

b1
(a1b3 − a5b1)

and so on ...

Routh’s Test, continued

sn : 1 a2 a4 a6 . . .
sn−1 : a1 a3 a5 a7 . . .
sn−2 : b1 b2 b3 . . .

sn−3 : c1 c2 . . .

Next, we form the fourth row marked by sn−3:

sn−3 : c1 c2 . . .

where

c1 = − 1

b1
det

(
a1 a3
b1 b2

)
= − 1

b1
(a1b2 − a3b1)

c2 = − 1

b1
det

(
a1 a5
b1 b3

)
= − 1

b1
(a1b3 − a5b1)

and so on ...

Routh’s Test, continued

sn : 1 a2 a4 a6 . . .
sn−1 : a1 a3 a5 a7 . . .
sn−2 : b1 b2 b3 . . .

sn−3 : c1 c2 . . .

Next, we form the fourth row marked by sn−3:

sn−3 : c1 c2 . . .

where c1 = − 1

b1
det

(
a1 a3
b1 b2

)
= − 1

b1
(a1b2 − a3b1)

c2 = − 1

b1
det

(
a1 a5
b1 b3

)
= − 1

b1
(a1b3 − a5b1)

and so on ...

Routh’s Test, continued

sn : 1 a2 a4 a6 . . .
sn−1 : a1 a3 a5 a7 . . .
sn−2 : b1 b2 b3 . . .

sn−3 : c1 c2 . . .

Next, we form the fourth row marked by sn−3:

sn−3 : c1 c2 . . .

where c1 = − 1

b1
det

(
a1 a3
b1 b2

)
= − 1

b1
(a1b2 − a3b1)

c2 = − 1

b1
det

(
a1 a5
b1 b3

)
= − 1

b1
(a1b3 − a5b1)

and so on ...

Routh’s Test, continued

sn : 1 a2 a4 a6 . . .
sn−1 : a1 a3 a5 a7 . . .
sn−2 : b1 b2 b3 . . .

sn−3 : c1 c2 . . .

Next, we form the fourth row marked by sn−3:

sn−3 : c1 c2 . . .

where c1 = − 1

b1
det

(
a1 a3
b1 b2

)
= − 1

b1
(a1b2 − a3b1)

c2 = − 1

b1
det

(
a1 a5
b1 b3

)
= − 1

b1
(a1b3 − a5b1)

and so on ...

Routh’s Test, continued

sn : 1 a2 a4 a6 . . .
sn−1 : a1 a3 a5 a7 . . .
sn−2 : b1 b2 b3 . . .
sn−3 : c1 c2 . . .

Next, we form the fourth row marked by sn−3:

sn−3 : c1 c2 . . .

where c1 = − 1

b1
det

(
a1 a3
b1 b2

)
= − 1

b1
(a1b2 − a3b1)

c2 = − 1

b1
det

(
a1 a5
b1 b3

)
= − 1

b1
(a1b3 − a5b1)

and so on ...

Routh’s Test, continued

Eventually, we complete the array like this:

sn : 1 a2 a4 a6 . . .
sn−1 : a1 a3 a5 a7 . . .
sn−2 : b1 b2 b3 . . .
sn−3 : c1 c2 . . .

...
s1 : ∗ ∗
s0 : ∗

(as long as we don’t get stuck with

division by zero: more on this later)

After the process terminates, we will have n+ 1 entries in the
first column.

Routh’s Test, continued

Eventually, we complete the array like this:

sn : 1 a2 a4 a6 . . .
sn−1 : a1 a3 a5 a7 . . .
sn−2 : b1 b2 b3 . . .
sn−3 : c1 c2 . . .

...
s1 : ∗ ∗
s0 : ∗

(as long as we don’t get stuck with

division by zero: more on this later)

After the process terminates, we will have n+ 1 entries in the
first column.

The Routh–Hurwitz Criterion
Consider degree-n polynomial

p(s) = sn + a1s
n−1 + . . .+ an−1s+ an

and form the Routh array:

sn : 1 a2 a4 a6 . . .
sn−1 : a1 a3 a5 a7 . . .
sn−2 : b1 b2 b3 . . .
sn−3 : c1 c2 . . .

...
s1 : ∗ ∗
s0 : ∗

The Routh–Hurwitz criterion: Assume that the necessary
condition for stability holds, i.e., a1, . . . , an > 0. Then:

I p is stable if and only if all entries in the first column are
positive;

I otherwise, #(RHP poles) = #(sign changes in 1st column)

The Routh–Hurwitz Criterion
Consider degree-n polynomial

p(s) = sn + a1s
n−1 + . . .+ an−1s+ an

and form the Routh array:

sn : 1 a2 a4 a6 . . .
sn−1 : a1 a3 a5 a7 . . .
sn−2 : b1 b2 b3 . . .
sn−3 : c1 c2 . . .

...
s1 : ∗ ∗
s0 : ∗

The Routh–Hurwitz criterion: Assume that the necessary
condition for stability holds, i.e., a1, . . . , an > 0. Then:

I p is stable if and only if all entries in the first column are
positive;

I otherwise, #(RHP poles) = #(sign changes in 1st column)

Example

Check stability of

p(s) = s4 + 4s3 + s2 + 2s+ 3

All coefficients strictly positive: necessary condition checks out.

s4 : 1 1 3
s3 : 4 2 0

s2 : 1/2 3
s1 : −22 0
s0 : 3

Answer: p is unstable — it has 2 RHP poles (2 sign changes in
1st column)

Example

Check stability of

p(s) = s4 + 4s3 + s2 + 2s+ 3

All coefficients strictly positive: necessary condition checks out.

s4 : 1 1 3
s3 : 4 2 0

s2 : 1/2 3
s1 : −22 0
s0 : 3

Answer: p is unstable — it has 2 RHP poles (2 sign changes in
1st column)

Example

Check stability of

p(s) = s4 + 4s3 + s2 + 2s+ 3

All coefficients strictly positive: necessary condition checks out.

s4 : 1 1 3
s3 : 4 2 0

s2 : 1/2 3
s1 : −22 0
s0 : 3

Answer: p is unstable — it has 2 RHP poles (2 sign changes in
1st column)

Example

Check stability of

p(s) = s4 + 4s3 + s2 + 2s+ 3

All coefficients strictly positive: necessary condition checks out.

s4 : 1 1 3
s3 : 4 2 0
s2 : 1/2 3

s1 : −22 0
s0 : 3

Answer: p is unstable — it has 2 RHP poles (2 sign changes in
1st column)

Example

Check stability of

p(s) = s4 + 4s3 + s2 + 2s+ 3

All coefficients strictly positive: necessary condition checks out.

s4 : 1 1 3
s3 : 4 2 0
s2 : 1/2 3
s1 : −22 0

s0 : 3

Answer: p is unstable — it has 2 RHP poles (2 sign changes in
1st column)

Example

Check stability of

p(s) = s4 + 4s3 + s2 + 2s+ 3

All coefficients strictly positive: necessary condition checks out.

s4 : 1 1 3
s3 : 4 2 0
s2 : 1/2 3
s1 : −22 0
s0 : 3

Answer: p is unstable — it has 2 RHP poles (2 sign changes in
1st column)

Example

Check stability of

p(s) = s4 + 4s3 + s2 + 2s+ 3

All coefficients strictly positive: necessary condition checks out.

s4 : 1 1 3
s3 : 4 2 0
s2 : 1/2 3
s1 : −22 0
s0 : 3

Answer: p is unstable — it has 2 RHP poles (2 sign changes in
1st column)

Example

Check stability of

p(s) = s4 + 4s3 + s2 + 2s+ 3

All coefficients strictly positive: necessary condition checks out.

s4 : 1 1 3
s3 : 4 2 0
s2 : 1/2 3
s1 : −22 0
s0 : 3

Answer: p is unstable — it has 2 RHP poles (2 sign changes in
1st column)

Low-Order Cases (n = 2, 3)

n = 2 p(s) = s2 + a1s+ a2

s2 : 1 a2
s1 : a1 0

s0 : b1 b1 = − 1
a1

det

(
1 a2
a1 0

)
= a2

— p is stable iff a1, a2 > 0 (necessary and sufficient).

n = 3 p(s) = s3 + a1s
2 + a2s+ a3

s3 : 1 a2
s2 : a1 a3

s1 : b1 0 b1 = − 1
a1

det

(
1 a2
a1 a3

)
= a1a2−a3

a1

s0 : c1 c1 = − 1
b2

det

(
a1 a3
b1 0

)
= a3

— p is stable iff a1, a2, a3 > 0 (necc. cond.) and a1a2 > a3

Low-Order Cases (n = 2, 3)

n = 2 p(s) = s2 + a1s+ a2

s2 : 1 a2
s1 : a1 0

s0 : b1 b1 = − 1
a1

det

(
1 a2
a1 0

)
= a2

— p is stable iff a1, a2 > 0 (necessary and sufficient).

n = 3 p(s) = s3 + a1s
2 + a2s+ a3

s3 : 1 a2
s2 : a1 a3

s1 : b1 0 b1 = − 1
a1

det

(
1 a2
a1 a3

)
= a1a2−a3

a1

s0 : c1 c1 = − 1
b2

det

(
a1 a3
b1 0

)
= a3

— p is stable iff a1, a2, a3 > 0 (necc. cond.) and a1a2 > a3

Low-Order Cases (n = 2, 3)

n = 2 p(s) = s2 + a1s+ a2

s2 : 1 a2
s1 : a1 0

s0 :

b1

b1 = − 1
a1

det

(
1 a2
a1 0

)
= a2

— p is stable iff a1, a2 > 0 (necessary and sufficient).

n = 3 p(s) = s3 + a1s
2 + a2s+ a3

s3 : 1 a2
s2 : a1 a3

s1 : b1 0 b1 = − 1
a1

det

(
1 a2
a1 a3

)
= a1a2−a3

a1

s0 : c1 c1 = − 1
b2

det

(
a1 a3
b1 0

)
= a3

— p is stable iff a1, a2, a3 > 0 (necc. cond.) and a1a2 > a3

Low-Order Cases (n = 2, 3)

n = 2 p(s) = s2 + a1s+ a2

s2 : 1 a2
s1 : a1 0

s0 : b1 b1 = − 1
a1

det

(
1 a2
a1 0

)
= a2

— p is stable iff a1, a2 > 0 (necessary and sufficient).

n = 3 p(s) = s3 + a1s
2 + a2s+ a3

s3 : 1 a2
s2 : a1 a3

s1 : b1 0 b1 = − 1
a1

det

(
1 a2
a1 a3

)
= a1a2−a3

a1

s0 : c1 c1 = − 1
b2

det

(
a1 a3
b1 0

)
= a3

— p is stable iff a1, a2, a3 > 0 (necc. cond.) and a1a2 > a3

Low-Order Cases (n = 2, 3)

n = 2 p(s) = s2 + a1s+ a2

s2 : 1 a2
s1 : a1 0

s0 : b1 b1 = − 1
a1

det

(
1 a2
a1 0

)
= a2

— p is stable iff a1, a2 > 0 (necessary and sufficient).

n = 3 p(s) = s3 + a1s
2 + a2s+ a3

s3 : 1 a2
s2 : a1 a3

s1 : b1 0 b1 = − 1
a1

det

(
1 a2
a1 a3

)
= a1a2−a3

a1

s0 : c1 c1 = − 1
b2

det

(
a1 a3
b1 0

)
= a3

— p is stable iff a1, a2, a3 > 0 (necc. cond.) and a1a2 > a3

Low-Order Cases (n = 2, 3)

n = 2 p(s) = s2 + a1s+ a2

s2 : 1 a2
s1 : a1 0

s0 : b1 b1 = − 1
a1

det

(
1 a2
a1 0

)
= a2

— p is stable iff a1, a2 > 0 (necessary and sufficient).

n = 3 p(s) = s3 + a1s
2 + a2s+ a3

s3 : 1 a2
s2 : a1 a3

s1 : b1 0 b1 = − 1
a1

det

(
1 a2
a1 a3

)
= a1a2−a3

a1

s0 : c1 c1 = − 1
b2

det

(
a1 a3
b1 0

)
= a3

— p is stable iff a1, a2, a3 > 0 (necc. cond.) and a1a2 > a3

Low-Order Cases (n = 2, 3)

n = 2 p(s) = s2 + a1s+ a2

s2 : 1 a2
s1 : a1 0

s0 : b1 b1 = − 1
a1

det

(
1 a2
a1 0

)
= a2

— p is stable iff a1, a2 > 0 (necessary and sufficient).

n = 3 p(s) = s3 + a1s
2 + a2s+ a3

s3 : 1 a2
s2 : a1 a3

s1 : b1 0 b1 = − 1
a1

det

(
1 a2
a1 a3

)
= a1a2−a3

a1

s0 : c1 c1 = − 1
b2

det

(
a1 a3
b1 0

)
= a3

— p is stable iff a1, a2, a3 > 0 (necc. cond.) and a1a2 > a3

Low-Order Cases (n = 2, 3)

n = 2 p(s) = s2 + a1s+ a2

s2 : 1 a2
s1 : a1 0

s0 : b1 b1 = − 1
a1

det

(
1 a2
a1 0

)
= a2

— p is stable iff a1, a2 > 0 (necessary and sufficient).

n = 3 p(s) = s3 + a1s
2 + a2s+ a3

s3 : 1 a2
s2 : a1 a3

s1 : b1 0

b1 = − 1
a1

det

(
1 a2
a1 a3

)
= a1a2−a3

a1

s0 : c1 c1 = − 1
b2

det

(
a1 a3
b1 0

)
= a3

— p is stable iff a1, a2, a3 > 0 (necc. cond.) and a1a2 > a3

Low-Order Cases (n = 2, 3)

n = 2 p(s) = s2 + a1s+ a2

s2 : 1 a2
s1 : a1 0

s0 : b1 b1 = − 1
a1

det

(
1 a2
a1 0

)
= a2

— p is stable iff a1, a2 > 0 (necessary and sufficient).

n = 3 p(s) = s3 + a1s
2 + a2s+ a3

s3 : 1 a2
s2 : a1 a3

s1 : b1 0 b1 = − 1
a1

det

(
1 a2
a1 a3

)
= a1a2−a3

a1

s0 : c1 c1 = − 1
b2

det

(
a1 a3
b1 0

)
= a3

— p is stable iff a1, a2, a3 > 0 (necc. cond.) and a1a2 > a3

Low-Order Cases (n = 2, 3)

n = 2 p(s) = s2 + a1s+ a2

s2 : 1 a2
s1 : a1 0

s0 : b1 b1 = − 1
a1

det

(
1 a2
a1 0

)
= a2

— p is stable iff a1, a2 > 0 (necessary and sufficient).

n = 3 p(s) = s3 + a1s
2 + a2s+ a3

s3 : 1 a2
s2 : a1 a3

s1 : b1 0 b1 = − 1
a1

det

(
1 a2
a1 a3

)
= a1a2−a3

a1

s0 :

c1

c1 = − 1
b2

det

(
a1 a3
b1 0

)
= a3

— p is stable iff a1, a2, a3 > 0 (necc. cond.) and a1a2 > a3

Low-Order Cases (n = 2, 3)

n = 2 p(s) = s2 + a1s+ a2

s2 : 1 a2
s1 : a1 0

s0 : b1 b1 = − 1
a1

det

(
1 a2
a1 0

)
= a2

— p is stable iff a1, a2 > 0 (necessary and sufficient).

n = 3 p(s) = s3 + a1s
2 + a2s+ a3

s3 : 1 a2
s2 : a1 a3

s1 : b1 0 b1 = − 1
a1

det

(
1 a2
a1 a3

)
= a1a2−a3

a1

s0 : c1 c1 = − 1
b2

det

(
a1 a3
b1 0

)
= a3

— p is stable iff a1, a2, a3 > 0 (necc. cond.) and a1a2 > a3

Low-Order Cases (n = 2, 3)

n = 2 p(s) = s2 + a1s+ a2

s2 : 1 a2
s1 : a1 0

s0 : b1 b1 = − 1
a1

det

(
1 a2
a1 0

)
= a2

— p is stable iff a1, a2 > 0 (necessary and sufficient).

n = 3 p(s) = s3 + a1s
2 + a2s+ a3

s3 : 1 a2
s2 : a1 a3

s1 : b1 0 b1 = − 1
a1

det

(
1 a2
a1 a3

)
= a1a2−a3

a1

s0 : c1 c1 = − 1
b2

det

(
a1 a3
b1 0

)
= a3

— p is stable iff a1, a2, a3 > 0 (necc. cond.) and a1a2 > a3

Stability Conditions for Low-Order Polynomials

The upshot:

I A 2nd-degree polynomial p(s) = s2 + a1s+ a2 is stable if
and only if a1 > 0 and a2 > 0

I A 3rd-degree polynomial p(s) = s3 + a1s
2 + a2s+ a3 is

stable if and only if a1, a2, a3 > 0 and a1a2 > a3

I These conditions were already obtained by Maxwell in
1868.

I In both cases, the computations were purely symbolic: this
can make a lot of difference in design, as opposed to
analysis.

Stability Conditions for Low-Order Polynomials

The upshot:

I A 2nd-degree polynomial p(s) = s2 + a1s+ a2 is stable if
and only if a1 > 0 and a2 > 0

I A 3rd-degree polynomial p(s) = s3 + a1s
2 + a2s+ a3 is

stable if and only if a1, a2, a3 > 0 and a1a2 > a3

I These conditions were already obtained by Maxwell in
1868.

I In both cases, the computations were purely symbolic: this
can make a lot of difference in design, as opposed to
analysis.

Stability Conditions for Low-Order Polynomials

The upshot:

I A 2nd-degree polynomial p(s) = s2 + a1s+ a2 is stable if
and only if a1 > 0 and a2 > 0

I A 3rd-degree polynomial p(s) = s3 + a1s
2 + a2s+ a3 is

stable if and only if a1, a2, a3 > 0 and a1a2 > a3

I These conditions were already obtained by Maxwell in
1868.

I In both cases, the computations were purely symbolic: this
can make a lot of difference in design, as opposed to
analysis.

Routh–Hurwitz as a Design Tool
Parametric stability range

We can use the Routh test to determine parameter ranges for
stability.

Example: consider the unity feedback configuration

s + 1

s3 + 2s2 � s YK
+
�R

controller
plant

Note that the plant is unstable (the denominator has a negative
coefficient and a zero coefficient).

Problem: determine the range of values the scalar gain K can
take, for which the closed-loop system is stable.

Routh–Hurwitz as a Design Tool
Parametric stability range

We can use the Routh test to determine parameter ranges for
stability.

Example: consider the unity feedback configuration

s + 1

s3 + 2s2 � s YK
+
�R

controller
plant

Note that the plant is unstable (the denominator has a negative
coefficient and a zero coefficient).

Problem: determine the range of values the scalar gain K can
take, for which the closed-loop system is stable.

Routh–Hurwitz as a Design Tool
Parametric stability range

We can use the Routh test to determine parameter ranges for
stability.

Example: consider the unity feedback configuration

s + 1

s3 + 2s2 � s YK
+
�R

controller
plant

Note that the plant is unstable (the denominator has a negative
coefficient and a zero coefficient).

Problem: determine the range of values the scalar gain K can
take, for which the closed-loop system is stable.

Routh–Hurwitz as a Design Tool
Parametric stability range

We can use the Routh test to determine parameter ranges for
stability.

Example: consider the unity feedback configuration

s + 1

s3 + 2s2 � s YK
+
�R

controller
plant

Note that the plant is unstable (the denominator has a negative
coefficient and a zero coefficient).

Problem: determine the range of values the scalar gain K can
take, for which the closed-loop system is stable.

Example, continued

s + 1

s3 + 2s2 � s YK
+
�R

Problem: determine the range of values the scalar gain K can
take, for which the closed-loop system is stable.

Let’s write down the transfer function from R to Y :

Y

R
=

forward gain

1 + loop gain

=
K · s+1

s3+2s2−s
1 +K · s+1

s3+2s2−s
=

K(s+ 1)

s3 + 2s2 − s+K(s+ 1)

=
Ks+K

s3 + 2s2 + (K − 1)s+K

Now we need to test stability of p(s) = s3 + 2s2 + (K − 1)s+K.

Example, continued

s + 1

s3 + 2s2 � s YK
+
�R

Problem: determine the range of values the scalar gain K can
take, for which the closed-loop system is stable.

Let’s write down the transfer function from R to Y :

Y

R
=

forward gain

1 + loop gain

=
K · s+1

s3+2s2−s
1 +K · s+1

s3+2s2−s
=

K(s+ 1)

s3 + 2s2 − s+K(s+ 1)

=
Ks+K

s3 + 2s2 + (K − 1)s+K

Now we need to test stability of p(s) = s3 + 2s2 + (K − 1)s+K.

Example, continued

s + 1

s3 + 2s2 � s YK
+
�R

Problem: determine the range of values the scalar gain K can
take, for which the closed-loop system is stable.

Let’s write down the transfer function from R to Y :

Y

R
=

forward gain

1 + loop gain

=
K · s+1

s3+2s2−s
1 +K · s+1

s3+2s2−s
=

K(s+ 1)

s3 + 2s2 − s+K(s+ 1)

=
Ks+K

s3 + 2s2 + (K − 1)s+K

Now we need to test stability of p(s) = s3 + 2s2 + (K − 1)s+K.

Example, continued

s + 1

s3 + 2s2 � s YK
+
�R

Problem: determine the range of values the scalar gain K can
take, for which the closed-loop system is stable.

Let’s write down the transfer function from R to Y :

Y

R
=

forward gain

1 + loop gain

=
K · s+1

s3+2s2−s
1 +K · s+1

s3+2s2−s

=
K(s+ 1)

s3 + 2s2 − s+K(s+ 1)

=
Ks+K

s3 + 2s2 + (K − 1)s+K

Now we need to test stability of p(s) = s3 + 2s2 + (K − 1)s+K.

Example, continued

s + 1

s3 + 2s2 � s YK
+
�R

Problem: determine the range of values the scalar gain K can
take, for which the closed-loop system is stable.

Let’s write down the transfer function from R to Y :

Y

R
=

forward gain

1 + loop gain

=
K · s+1

s3+2s2−s
1 +K · s+1

s3+2s2−s
=

K(s+ 1)

s3 + 2s2 − s+K(s+ 1)

=
Ks+K

s3 + 2s2 + (K − 1)s+K

Now we need to test stability of p(s) = s3 + 2s2 + (K − 1)s+K.

Example, continued

s + 1

s3 + 2s2 � s YK
+
�R

Problem: determine the range of values the scalar gain K can
take, for which the closed-loop system is stable.

Let’s write down the transfer function from R to Y :

Y

R
=

forward gain

1 + loop gain

=
K · s+1

s3+2s2−s
1 +K · s+1

s3+2s2−s
=

K(s+ 1)

s3 + 2s2 − s+K(s+ 1)

=
Ks+K

s3 + 2s2 + (K − 1)s+K

Now we need to test stability of p(s) = s3 + 2s2 + (K − 1)s+K.

Example, continued

s + 1

s3 + 2s2 � s YK
+
�R

Problem: determine the range of values the scalar gain K can
take, for which the closed-loop system is stable.

Let’s write down the transfer function from R to Y :

Y

R
=

forward gain

1 + loop gain

=
K · s+1

s3+2s2−s
1 +K · s+1

s3+2s2−s
=

K(s+ 1)

s3 + 2s2 − s+K(s+ 1)

=
Ks+K

s3 + 2s2 + (K − 1)s+K

Now we need to test stability of p(s) = s3 + 2s2 + (K − 1)s+K.

Example, continued
Test stability of

p(s) = s3 + 2s2 + (K − 1)s+K

using the Routh test.

Form the Routh array:

s3 : 1 K − 1
s2 : 2 K

s1 : K
2 − 1 0

s0 : K

For p to be stable, all entries in the 1st column must be positive:

K

2
− 1 > 0 and K > 0

(already covered by K > 1)

Note: The necessary condition requires K > 1, but now we
actually know that we must have K > 2 for stability.

Example, continued
Test stability of

p(s) = s3 + 2s2 + (K − 1)s+K

using the Routh test.

Form the Routh array:

s3 : 1 K − 1
s2 : 2 K

s1 : K
2 − 1 0

s0 : K

For p to be stable, all entries in the 1st column must be positive:

K

2
− 1 > 0 and K > 0

(already covered by K > 1)

Note: The necessary condition requires K > 1, but now we
actually know that we must have K > 2 for stability.

Example, continued
Test stability of

p(s) = s3 + 2s2 + (K − 1)s+K

using the Routh test.

Form the Routh array:

s3 : 1 K − 1
s2 : 2 K

s1 : K
2 − 1 0

s0 : K

For p to be stable, all entries in the 1st column must be positive:

K

2
− 1 > 0 and K > 0

(already covered by K > 1)

Note: The necessary condition requires K > 1, but now we
actually know that we must have K > 2 for stability.

Example, continued
Test stability of

p(s) = s3 + 2s2 + (K − 1)s+K

using the Routh test.

Form the Routh array:

s3 : 1 K − 1
s2 : 2 K

s1 : K
2 − 1 0

s0 : K

For p to be stable, all entries in the 1st column must be positive:

K

2
− 1 > 0 and K > 0

(already covered by K > 1)

Note: The necessary condition requires K > 1, but now we
actually know that we must have K > 2 for stability.

Example, continued
Test stability of

p(s) = s3 + 2s2 + (K − 1)s+K

using the Routh test.

Form the Routh array:

s3 : 1 K − 1
s2 : 2 K

s1 : K
2 − 1 0

s0 : K

For p to be stable, all entries in the 1st column must be positive:

K

2
− 1 > 0 and K > 0

(already covered by K > 1)

Note: The necessary condition requires K > 1, but now we
actually know that we must have K > 2 for stability.

Example, continued
Test stability of

p(s) = s3 + 2s2 + (K − 1)s+K

using the Routh test.

Form the Routh array:

s3 : 1 K − 1
s2 : 2 K

s1 : K
2 − 1 0

s0 : K

For p to be stable, all entries in the 1st column must be positive:

K

2
− 1 > 0 and K > 0

(already covered by K > 1)

Note: The necessary condition requires K > 1, but now we
actually know that we must have K > 2 for stability.

Example, continued
Test stability of

p(s) = s3 + 2s2 + (K − 1)s+K

using the Routh test.

Form the Routh array:

s3 : 1 K − 1
s2 : 2 K

s1 : K
2 − 1 0

s0 : K

For p to be stable, all entries in the 1st column must be positive:

K

2
− 1 > 0 and K > 0

(already covered by K > 1)

Note: The necessary condition requires K > 1, but now we
actually know that we must have K > 2 for stability.

Example, continued
Test stability of

p(s) = s3 + 2s2 + (K − 1)s+K

using the Routh test.

Form the Routh array:

s3 : 1 K − 1
s2 : 2 K

s1 : K
2 − 1 0

s0 : K

For p to be stable, all entries in the 1st column must be positive:

K

2
− 1 > 0 and K > 0

(already covered by K > 1)

Note: The necessary condition requires K > 1, but now we
actually know that we must have K > 2 for stability.

Example, continued

Test stability of

p(s) = s3 + 2s2 + (K − 1)s+K

using the Routh test.

Form the Routh array:

s3 : 1 K − 1
s2 : 2 K

s1 : K
2 − 1 0

s0 : K

For p to be stable, all entries in the 1st column must be positive:

K > 2 and K > 0 (already covered by K > 1)

Note: The necessary condition requires K > 1, but now we
actually know that we must have K > 2 for stability.

Example, continued

Test stability of

p(s) = s3 + 2s2 + (K − 1)s+K

using the Routh test.

Form the Routh array:

s3 : 1 K − 1
s2 : 2 K

s1 : K
2 − 1 0

s0 : K

For p to be stable, all entries in the 1st column must be positive:

K > 2 and K > 0 (already covered by K > 1)

Note: The necessary condition requires K > 1, but now we
actually know that we must have K > 2 for stability.

Some Comments on the Routh Test

I The result (#(RHP roots)) is not affected if we multiply or
divide any row of the Routh array by an arbitrary positive
number.

I If we get a zero element in the 1st column, we can’t
continue. In that case, we can replace the 0 by a small
number ε and apply Routh test to that. When we are done
with the array, take the limit as ε→ 0. (see Ex. 3.33 in
FPE)

I For an entire row of zeros, the procedure is a more
complicated (see Example 3.34 in FPE) – we will not worry
about this too much.

Some Comments on the Routh Test

I The result (#(RHP roots)) is not affected if we multiply or
divide any row of the Routh array by an arbitrary positive
number.

I If we get a zero element in the 1st column, we can’t
continue. In that case, we can replace the 0 by a small
number ε and apply Routh test to that. When we are done
with the array, take the limit as ε→ 0. (see Ex. 3.33 in
FPE)

I For an entire row of zeros, the procedure is a more
complicated (see Example 3.34 in FPE) – we will not worry
about this too much.

Some Comments on the Routh Test

I The result (#(RHP roots)) is not affected if we multiply or
divide any row of the Routh array by an arbitrary positive
number.

I If we get a zero element in the 1st column, we can’t
continue. In that case, we can replace the 0 by a small
number ε and apply Routh test to that. When we are done
with the array, take the limit as ε→ 0.

(see Ex. 3.33 in
FPE)

I For an entire row of zeros, the procedure is a more
complicated (see Example 3.34 in FPE) – we will not worry
about this too much.

Some Comments on the Routh Test

I The result (#(RHP roots)) is not affected if we multiply or
divide any row of the Routh array by an arbitrary positive
number.

I If we get a zero element in the 1st column, we can’t
continue. In that case, we can replace the 0 by a small
number ε and apply Routh test to that. When we are done
with the array, take the limit as ε→ 0. (see Ex. 3.33 in
FPE)

I For an entire row of zeros, the procedure is a more
complicated (see Example 3.34 in FPE) – we will not worry
about this too much.

Some Comments on the Routh Test

I The result (#(RHP roots)) is not affected if we multiply or
divide any row of the Routh array by an arbitrary positive
number.

I If we get a zero element in the 1st column, we can’t
continue. In that case, we can replace the 0 by a small
number ε and apply Routh test to that. When we are done
with the array, take the limit as ε→ 0. (see Ex. 3.33 in
FPE)

I For an entire row of zeros, the procedure is a more
complicated

(see Example 3.34 in FPE) – we will not worry
about this too much.

Some Comments on the Routh Test

I The result (#(RHP roots)) is not affected if we multiply or
divide any row of the Routh array by an arbitrary positive
number.

I If we get a zero element in the 1st column, we can’t
continue. In that case, we can replace the 0 by a small
number ε and apply Routh test to that. When we are done
with the array, take the limit as ε→ 0. (see Ex. 3.33 in
FPE)

I For an entire row of zeros, the procedure is a more
complicated (see Example 3.34 in FPE)

– we will not worry
about this too much.

Some Comments on the Routh Test

I The result (#(RHP roots)) is not affected if we multiply or
divide any row of the Routh array by an arbitrary positive
number.

I If we get a zero element in the 1st column, we can’t
continue. In that case, we can replace the 0 by a small
number ε and apply Routh test to that. When we are done
with the array, take the limit as ε→ 0. (see Ex. 3.33 in
FPE)

I For an entire row of zeros, the procedure is a more
complicated (see Example 3.34 in FPE) – we will not worry
about this too much.

