Plan of the Lecture

- ▶ Review: prototype 2nd-order system
- ▶ Today's topic: transient response specifications

Plan of the Lecture

- ▶ Review: prototype 2nd-order system
- ▶ Today's topic: transient response specifications

Goal: develop formulas and intuition for various features of the transient response: rise time, overshoot, settling time.

Plan of the Lecture

- ▶ Review: prototype 2nd-order system
- ▶ Today's topic: transient response specifications

Goal: develop formulas and intuition for various features of the transient response: rise time, overshoot, settling time.

Reading: FPE, Sections 3.3–3.4; lab manual

Prototype 2nd-Order System

$$H(s) = \frac{\omega_n^2}{s^2 + 2\zeta\omega_n s + \omega_n^2}$$

By the quadratic formula, the poles are:

$$s = -\zeta \omega_n \pm \omega_n \sqrt{\zeta^2 - 1}$$
$$= -\omega_n \left(\zeta \pm \sqrt{\zeta^2 - 1}\right)$$

The nature of the poles changes depending on ζ :

- $\zeta > 1$ both poles are real and negative
- $\zeta = 1$ one negative pole
- $\zeta < 1$ two complex poles with negative real parts

s =
$$-\sigma \pm j\omega_d$$

where $\sigma = \zeta \omega_n, \ \omega_d = \omega_n \sqrt{1 - \zeta^2}$

Prototype 2nd-Order System

$$H(s) = \frac{\omega_n^2}{s^2 + 2\zeta\omega_n s + \omega_n^2}, \qquad \zeta < 1$$

The poles are

$$s = -\zeta \omega_n \pm j \omega_n \sqrt{1 - \zeta^2} = -\sigma \pm j \omega_d$$

Note that

$$\sigma^{2} + \omega_{d}^{2} = \zeta^{2}\omega_{n}^{2} + \omega_{n}^{2} - \zeta^{2}\omega_{n}^{2}$$
$$= \omega_{n}^{2}$$
$$\cos\varphi = \frac{\zeta\omega_{n}}{\omega_{n}} = \zeta$$

Let's compute the system's impulse and step response:

Let's compute the system's impulse and step response:

$$H(s) = \frac{\omega_n^2}{s^2 + 2\zeta\omega_n s + \omega_n^2} = \frac{\omega_n^2}{(s+\sigma)^2 + \omega_d^2}$$

Let's compute the system's impulse and step response:

$$H(s) = \frac{\omega_n^2}{s^2 + 2\zeta\omega_n s + \omega_n^2} = \frac{\omega_n^2}{(s+\sigma)^2 + \omega_d^2}$$

$$h(t) = \mathscr{L}^{-1}\{H(s)\} = \mathscr{L}^{-1}\left\{\frac{\omega_n^2}{(s+\sigma)^2 + \omega_d^2}\right\}$$

Let's compute the system's impulse and step response:

$$H(s) = \frac{\omega_n^2}{s^2 + 2\zeta\omega_n s + \omega_n^2} = \frac{\omega_n^2}{(s+\sigma)^2 + \omega_d^2}$$

$$h(t) = \mathscr{L}^{-1}\{H(s)\} = \mathscr{L}^{-1}\left\{\frac{(\omega_n^2/\omega_d)\omega_d}{(s+\sigma)^2 + \omega_d^2}\right\}$$

Let's compute the system's impulse and step response:

$$H(s) = \frac{\omega_n^2}{s^2 + 2\zeta\omega_n s + \omega_n^2} = \frac{\omega_n^2}{(s+\sigma)^2 + \omega_d^2}$$

$$h(t) = \mathscr{L}^{-1}\{H(s)\} = \mathscr{L}^{-1}\left\{\frac{(\omega_n^2/\omega_d)\omega_d}{(s+\sigma)^2 + \omega_d^2}\right\}$$
$$= \frac{\omega_n^2}{\omega_d} e^{-\sigma t} \sin(\omega_d t)$$

Let's compute the system's impulse and step response:

$$H(s) = \frac{\omega_n^2}{s^2 + 2\zeta\omega_n s + \omega_n^2} = \frac{\omega_n^2}{(s+\sigma)^2 + \omega_d^2}$$

$$h(t) = \mathscr{L}^{-1} \{ H(s) \} = \mathscr{L}^{-1} \left\{ \frac{(\omega_n^2 / \omega_d) \omega_d}{(s + \sigma)^2 + \omega_d^2} \right\}$$
$$= \frac{\omega_n^2}{\omega_d} e^{-\sigma t} \sin(\omega_d t) \qquad \text{(table, # 20)}$$

Let's compute the system's impulse and step response:

$$H(s) = \frac{\omega_n^2}{s^2 + 2\zeta\omega_n s + \omega_n^2} = \frac{\omega_n^2}{(s+\sigma)^2 + \omega_d^2}$$

► Impulse response:

$$h(t) = \mathscr{L}^{-1} \{ H(s) \} = \mathscr{L}^{-1} \left\{ \frac{(\omega_n^2 / \omega_d) \omega_d}{(s + \sigma)^2 + \omega_d^2} \right\}$$
$$= \frac{\omega_n^2}{\omega_d} e^{-\sigma t} \sin(\omega_d t) \qquad \text{(table, # 20)}$$

$$\mathscr{L}^{-1}\left\{\frac{H(s)}{s}\right\} = \mathscr{L}^{-1}\left\{\frac{\omega_n^2}{s[(s+\sigma)^2 + \omega_d^2]}\right\}$$

Let's compute the system's impulse and step response:

$$H(s) = \frac{\omega_n^2}{s^2 + 2\zeta\omega_n s + \omega_n^2} = \frac{\omega_n^2}{(s+\sigma)^2 + \omega_d^2}$$

► Impulse response:

$$h(t) = \mathscr{L}^{-1} \{ H(s) \} = \mathscr{L}^{-1} \left\{ \frac{(\omega_n^2/\omega_d)\omega_d}{(s+\sigma)^2 + \omega_d^2} \right\}$$
$$= \frac{\omega_n^2}{\omega_d} e^{-\sigma t} \sin(\omega_d t) \qquad \text{(table, # 20)}$$

$$\mathscr{L}^{-1}\left\{\frac{H(s)}{s}\right\} = \mathscr{L}^{-1}\left\{\frac{\sigma^2 + \omega_d^2}{s[(s+\sigma)^2 + \omega_d^2]}\right\}$$

Let's compute the system's impulse and step response:

$$H(s) = \frac{\omega_n^2}{s^2 + 2\zeta\omega_n s + \omega_n^2} = \frac{\omega_n^2}{(s+\sigma)^2 + \omega_d^2}$$

► Impulse response:

$$h(t) = \mathscr{L}^{-1} \{ H(s) \} = \mathscr{L}^{-1} \left\{ \frac{(\omega_n^2/\omega_d)\omega_d}{(s+\sigma)^2 + \omega_d^2} \right\}$$
$$= \frac{\omega_n^2}{\omega_d} e^{-\sigma t} \sin(\omega_d t) \qquad \text{(table, # 20)}$$

$$\mathscr{L}^{-1}\left\{\frac{H(s)}{s}\right\} = \mathscr{L}^{-1}\left\{\frac{\sigma^2 + \omega_d^2}{s[(s+\sigma)^2 + \omega_d^2]}\right\}$$
$$= 1 - e^{-\sigma t}\left(\cos(\omega_d t) + \frac{\sigma}{\omega_d}\sin(\omega_d t)\right)$$

Let's compute the system's impulse and step response:

$$H(s) = \frac{\omega_n^2}{s^2 + 2\zeta\omega_n s + \omega_n^2} = \frac{\omega_n^2}{(s+\sigma)^2 + \omega_d^2}$$

► Impulse response:

$$h(t) = \mathscr{L}^{-1} \{ H(s) \} = \mathscr{L}^{-1} \left\{ \frac{(\omega_n^2/\omega_d)\omega_d}{(s+\sigma)^2 + \omega_d^2} \right\}$$
$$= \frac{\omega_n^2}{\omega_d} e^{-\sigma t} \sin(\omega_d t) \qquad \text{(table, # 20)}$$

$$\mathscr{L}^{-1}\left\{\frac{H(s)}{s}\right\} = \mathscr{L}^{-1}\left\{\frac{\sigma^2 + \omega_d^2}{s[(s+\sigma)^2 + \omega_d^2]}\right\}$$
$$= 1 - e^{-\sigma t}\left(\cos(\omega_d t) + \frac{\sigma}{\omega_d}\sin(\omega_d t)\right) \qquad \text{(table, #21)}$$

$$H(s) = \frac{\omega_n^2}{s^2 + 2\zeta\omega_n s + \omega_n^2} = \frac{\omega_n^2}{(s+\sigma)^2 + \omega_d^2}$$
$$u(t) = 1(t) \qquad \longrightarrow \qquad y(t) = 1 - e^{-\sigma t} \left(\cos(\omega_d t) + \frac{\sigma}{\omega_d}\sin(\omega_d t)\right)$$

where $\sigma = \zeta \omega_n$ and $\omega_d = \omega_n \sqrt{1 - \zeta^2}$ (damped frequency)

$$H(s) = \frac{\omega_n^2}{s^2 + 2\zeta\omega_n s + \omega_n^2} = \frac{\omega_n^2}{(s+\sigma)^2 + \omega_d^2}$$
$$u(t) = 1(t) \qquad \longrightarrow \qquad y(t) = 1 - e^{-\sigma t} \left(\cos(\omega_d t) + \frac{\sigma}{\omega_d}\sin(\omega_d t)\right)$$

where
$$\sigma = \zeta \omega_n$$
 and $\omega_d = \omega_n \sqrt{1 - \zeta^2}$ (damped frequency)

The parameter ζ is called the *damping ratio*

- $\zeta > 1$: system is overdamped
- $\zeta < 1$: system is underdamped
- $\zeta = 0$: no damping $(\omega_d = \omega_n)$

$$H(s) = \frac{\omega_n^2}{s^2 + 2\zeta\omega_n s + \omega_n^2} = \frac{\omega_n^2}{(s+\sigma)^2 + \omega_d^2}$$
$$u(t) = 1(t) \qquad \longrightarrow \qquad y(t) = 1 - e^{-\sigma t} \left(\cos(\omega_d t) + \frac{\sigma}{\omega_d}\sin(\omega_d t)\right)$$

where $\sigma = \zeta \omega_n$ and $\omega_d = \omega_n \sqrt{1 - \zeta^2}$ (damped frequency)

$$H(s) = \frac{\omega_n^2}{s^2 + 2\zeta\omega_n s + \omega_n^2} = \frac{\omega_n^2}{(s+\sigma)^2 + \omega_d^2}$$
$$u(t) = 1(t) \longrightarrow \qquad y(t) = 1 - e^{-\sigma t} \left(\cos(\omega_d t) + \frac{\sigma}{\omega_d}\sin(\omega_d t)\right)$$

where $\sigma = \zeta \omega_n$ and $\omega_d = \omega_n \sqrt{1 - \zeta^2}$ (damped frequency)

We will see that the parameters ζ and ω_n determine certain important features of the transient part of the above step response.

$$H(s) = \frac{\omega_n^2}{s^2 + 2\zeta\omega_n s + \omega_n^2} = \frac{\omega_n^2}{(s+\sigma)^2 + \omega_d^2}$$
$$u(t) = 1(t) \qquad \longrightarrow \qquad y(t) = 1 - e^{-\sigma t} \left(\cos(\omega_d t) + \frac{\sigma}{\omega_d}\sin(\omega_d t)\right)$$

where $\sigma = \zeta \omega_n$ and $\omega_d = \omega_n \sqrt{1 - \zeta^2}$ (damped frequency)

We will see that the parameters ζ and ω_n determine certain important features of the transient part of the above step response.

We will also learn how to pick ζ and ω_n in order to *shape* these features according to given *specifications*.

Transient Response Specifications: Rise Time Let's first take a look at 1st-order step response

Let's first take a look at 1st-order step response

$$H(s) = \frac{a}{s+a}, \qquad a > 0$$

Let's first take a look at 1st-order step response

$$H(s) = \frac{a}{s+a}, \qquad a > 0 \qquad \text{(stable pole)}$$

Let's first take a look at 1st-order step response

$$H(s) = \frac{a}{s+a}, \qquad a > 0 \qquad \text{(stable pole)}$$

Let's first take a look at 1st-order step response

$$H(s) = \frac{a}{s+a}, \qquad a > 0 \qquad \text{(stable pole)}$$

DC gain = 1 (by FVT)

Let's first take a look at 1st-order step response

$$H(s) = \frac{a}{s+a}, \qquad a > 0 \qquad \text{(stable pole)}$$

Step response:
$$Y(s) = \frac{H(s)}{s} = \frac{a}{s(s+a)} = \frac{1}{s} - \frac{1}{s+a}$$

Let's first take a look at 1st-order step response

$$H(s) = \frac{a}{s+a}, \qquad a > 0 \qquad \text{(stable pole)}$$

Step response:
$$Y(s) = \frac{H(s)}{s} = \frac{a}{s(s+a)} = \frac{1}{s} - \frac{1}{s+a}$$

 $y(t) = \mathscr{L}^{-1}\{Y(s)\} = 1(t) - e^{-at}$

Let's first take a look at 1st-order step response

$$H(s) = \frac{a}{s+a}, \qquad a > 0 \qquad \text{(stable pole)}$$

Step response:
$$Y(s) = \frac{H(s)}{s} = \frac{a}{s(s+a)} = \frac{1}{s} - \frac{1}{s+a}$$

 $y(t) = \mathcal{L}^{-1}\{Y(s)\} = 1(t) - e^{-at}$

Let's first take a look at 1st-order step response

$$H(s) = \frac{a}{s+a}, \qquad a > 0 \qquad \text{(stable pole)}$$

DC gain = 1 (by FVT)

Step response:
$$Y(s) = \frac{H(s)}{s} = \frac{a}{s(s+a)} = \frac{1}{s} - \frac{1}{s+a}$$

 $y(t) = \mathcal{L}^{-1}\{Y(s)\} = 1(t) - e^{-at}$

Rise time t_r : the time it takes to get from 10% of steady-state value to 90%

Rise time t_r : the time it takes to get from 10% of steady-state value to 90%

Rise time t_r : the time it takes to get from 10% of steady-state value to 90%

Examples of rise time:

- car going from 0 to 60 mph in 7 sec
- ▶ oven reach desired preheat temperature quickly
- ▶ thermostat, building climate control
- ▶ other examples?

takes to get from 10% of steady-state value to 90%

In this example, it is easy to compute t_r analytically:

$$1 - e^{-at_{0.1}} = 0.1$$
 $e^{-at_{0.1}} = 0.9$ $t_{0.1} = -\frac{\ln 0.9}{a}$

In this example, it is easy to compute t_r analytically:

$$1 - e^{-at_{0.1}} = 0.1 \qquad e^{-at_{0.1}} = 0.9 \qquad t_{0.1} = -\frac{\ln 0.9}{a}$$
$$1 - e^{-at_{0.9}} = 0.9 \qquad e^{-at_{0.9}} = 0.1 \qquad t_{0.9} = -\frac{\ln 0.1}{a}$$

In this example, it is easy to compute t_r analytically:

$$1 - e^{-at_{0.1}} = 0.1 \qquad e^{-at_{0.1}} = 0.9 \qquad t_{0.1} = -\frac{\ln 0.9}{a}$$
$$1 - e^{-at_{0.9}} = 0.9 \qquad e^{-at_{0.9}} = 0.1 \qquad t_{0.9} = -\frac{\ln 0.1}{a}$$
$$t_r = t_{0.9} - t_{0.1} = \frac{\ln 0.9 - \ln 0.1}{a} = \frac{\ln 9}{a} \approx \frac{2.2}{a}$$

Transient Response Specs

Now let's consider the more interesting case: 2nd-order response

$$H(s) = \frac{\omega_n^2}{s^2 + 2\zeta\omega_n s + \omega_n^2} = \frac{\omega_n^2}{(s+\sigma)^2 + \omega_d^2}$$

where $\sigma = \zeta \omega_n \ \omega_d = \omega_n \sqrt{1 - \zeta^2} \qquad (\zeta < 1)$

Transient Response Specs

Now let's consider the more interesting case: 2nd-order response

$$H(s) = \frac{\omega_n^2}{s^2 + 2\zeta\omega_n s + \omega_n^2} = \frac{\omega_n^2}{(s+\sigma)^2 + \omega_d^2}$$

where $\sigma = \zeta \omega_n \ \omega_d = \omega_n \sqrt{1 - \zeta^2} \qquad (\zeta < 1)$

Transient Response Specs

Now let's consider the more interesting case: 2nd-order response

$$H(s) = \frac{\omega_n^2}{s^2 + 2\zeta\omega_n s + \omega_n^2} = \frac{\omega_n^2}{(s+\sigma)^2 + \omega_d^2}$$

where $\sigma = \zeta \omega_n \, \omega_d = \omega_n \sqrt{1 - \zeta^2} \qquad (\zeta < 1)$

Step response:

Transient-Response Specs

Transient-Response Specs

▶ rise time t_r — time to get from $0.1y(\infty)$ to $0.9y(\infty)$

- overshoot M_p and peak time t_p
- ▶ settling time t_s first time for transients to decay to within a specified small percentage of $y(\infty)$ and stay in that range (we will usually worry about 5% settling time)

Transient-Response Specs

▶ rise time t_r — time to get from $0.1y(\infty)$ to $0.9y(\infty)$

- overshoot M_p and peak time t_p
- ▶ settling time t_s first time for transients to decay to within a specified small percentage of $y(\infty)$ and stay in that range (we will usually worry about 5% settling time)

Do we want these quantities to be large or small?

Do we want these quantities to be large or small?

 $\blacktriangleright t_r$ small

- $\blacktriangleright t_r$ small
- \blacktriangleright M_p

- $\blacktriangleright t_r$ small
- M_p small

- $\blacktriangleright t_r$ small
- $\blacktriangleright M_p$ small
- $\blacktriangleright t_p$

- $\blacktriangleright t_r$ small
- M_p small
- $\blacktriangleright t_p$ small

- $\blacktriangleright t_r$ small
- $\blacktriangleright M_p$ small
- $\blacktriangleright t_p$ small

$$\blacktriangleright t_s$$

- $\blacktriangleright t_r$ small
- M_p small
- $\blacktriangleright t_p$ small
- $\blacktriangleright t_s$ small

Do we want these quantities to be large or small?

- $\blacktriangleright t_r$ small
- M_p small
- $\blacktriangleright t_p$ small
- $\blacktriangleright t_s$ small

Trade-offs among specs:

Do we want these quantities to be large or small?

- $\blacktriangleright t_r$ small
- M_p small
- $\blacktriangleright t_p$ small
- $\blacktriangleright t_s$ small

Trade-offs among specs: decrease $t_r \longrightarrow$ increase M_p , etc.

Rise time t_r — hard to calculate analytically.

Rise time t_r — hard to calculate analytically. Empirically, on the normalized time scale $(t \rightarrow \omega_n t)$, rise times are *approximately* the same

Rise time t_r — hard to calculate analytically. Empirically, on the normalized time scale $(t \rightarrow \omega_n t)$, rise times are *approximately* the same

 $w_n t_r \approx 1.8$ (exact for $\zeta = 0.5$)

Rise time t_r — hard to calculate analytically. Empirically, on the normalized time scale $(t \rightarrow \omega_n t)$, rise times are *approximately* the same

$$w_n t_r \approx 1.8$$
 (exact for $\zeta = 0.5$)

So, we will work with $t_r \approx \frac{1.8}{\omega_n}$

(good approx. when $\zeta \approx 0.5$)

 t_p is the first time t > 0 when y'(t) = 0

 t_p is the first time t > 0 when y'(t) = 0

$$y(t) = 1 - e^{-\sigma t} \left(\cos(\omega_d t) + \frac{\sigma}{\omega_d} \sin(\omega_d t) \right)$$

 t_p is the first time t > 0 when y'(t) = 0

$$y(t) = 1 - e^{-\sigma t} \left(\cos(\omega_d t) + \frac{\sigma}{\omega_d} \sin(\omega_d t) \right)$$
$$y'(t) = \left(\frac{\sigma^2}{\omega_d} + \omega_d \right) e^{-\sigma t} \sin(\omega_d t)$$

 t_p is the first time t > 0 when y'(t) = 0

$$y(t) = 1 - e^{-\sigma t} \left(\cos(\omega_d t) + \frac{\sigma}{\omega_d} \sin(\omega_d t) \right)$$
$$y'(t) = \left(\frac{\sigma^2}{\omega_d} + \omega_d \right) e^{-\sigma t} \sin(\omega_d t) = 0 \text{ when } \omega_d t = 0, \pi, 2\pi, \dots$$

 t_p is the first time t > 0 when y'(t) = 0

$$y(t) = 1 - e^{-\sigma t} \left(\cos(\omega_d t) + \frac{\sigma}{\omega_d} \sin(\omega_d t) \right)$$
$$y'(t) = \left(\frac{\sigma^2}{\omega_d} + \omega_d \right) e^{-\sigma t} \sin(\omega_d t) = 0 \text{ when } \omega_d t = 0, \pi, 2\pi, \dots$$

so $t_p = \frac{\pi}{\omega_d}$

We have just computed $t_p = \frac{\pi}{\omega_d}$

We have just computed $t_p = \frac{\pi}{\omega_d}$

We have just computed $t_p = \frac{\pi}{\omega_d}$

$$M_p = y(t_p) - 1$$

We have just computed $t_p = \frac{\pi}{\omega_d}$

$$M_p = y(t_p) - 1 = -e^{-\frac{\sigma\pi}{\omega_d}} \left(\cos\left(\omega_d \frac{\pi}{\omega_d}\right) + \frac{\sigma}{\omega_d} \sin\left(\omega_d \frac{\pi}{\omega_d}\right) \right)$$

We have just computed $t_p = \frac{\pi}{\omega_d}$

$$M_p = y(t_p) - 1 = -e^{-\frac{\sigma\pi}{\omega_d}} \left(\cos\left(\omega_d \frac{\pi}{\omega_d}\right) + \frac{\sigma}{\omega_d} \sin\left(\omega_d \frac{\pi}{\omega_d}\right) \right)$$
$$= \exp\left(-\frac{\sigma\pi}{\omega_d}\right)$$

We have just computed $t_p = \frac{\pi}{\omega_d}$

$$M_p = y(t_p) - 1 = -e^{-\frac{\sigma\pi}{\omega_d}} \left(\cos\left(\omega_d \frac{\pi}{\omega_d}\right) + \frac{\sigma}{\omega_d} \sin\left(\omega_d \frac{\pi}{\omega_d}\right) \right)$$
$$= \exp\left(-\frac{\sigma\pi}{\omega_d}\right) = \exp\left(-\frac{\pi\zeta}{\sqrt{1-\zeta^2}}\right) \qquad -\text{exact formula}$$

here, $e^{-\sigma t}$ is what matters (sin and cos are bounded between ± 1), so $e^{-\sigma t_s} \leq 0.05$

 ± 1), so $e^{-\sigma t_s} \le 0.05$ this gives $t_s = -\frac{\ln 0.05}{\sigma} \approx \frac{3}{\sigma}$

Formulas for TD Specs

$$H(s) = \frac{\omega_n^2}{s^2 + 2\zeta\omega_n s + \omega_n^2} = \frac{\sigma^2 + \omega_d^2}{(s+\sigma)^2 + \omega_d^2}$$

$$t_r \approx \frac{1.8}{\omega_n}$$
$$t_p = \frac{\pi}{\omega_d}$$
$$M_p = \exp\left(-\frac{\pi\zeta}{\sqrt{1-\zeta^2}}\right)$$
$$t_s \approx \frac{3}{\sigma}$$

TD Specs in Frequency Domain

We want to *visualize* time-domain specs in terms of *admissible pole locations* for the 2nd-order system

$$H(s) = \frac{\omega_n^2}{s^2 + 2\zeta\omega_n s + \omega_n^2} = \frac{\sigma^2 + \omega_d^2}{(s+\sigma)^2 + \omega_d^2}$$

where $\sigma = \zeta\omega_n$
 $\omega_d = \omega_n \sqrt{1-\zeta^2}$
Step response: $y(t) = 1 - e^{-\sigma t} \left(\cos(\omega_d t) + \frac{\sigma}{\omega_d} \sin(\omega_d t) \right)$

$$\omega_n^2 = \sigma^2 + \omega_d^2$$
$$\zeta = \cos \varphi$$

Rise Time in Frequency Domain

Suppose we want $t_r \leq c$ (c is some desired given value)

Rise Time in Frequency Domain

Suppose we want $t_r \leq c$ (c is some desired given value)

$$t_r \approx \frac{1.8}{\omega_n} \le c \qquad \Longrightarrow \qquad \omega_n \ge \frac{1.8}{c}$$

Rise Time in Frequency Domain

Suppose we want $t_r \leq c$ (c is some desired given value)

$$t_r \approx \frac{1.8}{\omega_n} \le c \qquad \Longrightarrow \qquad \omega_n \ge \frac{1.8}{c}$$

Geometrically, we want poles to lie in the shaded region:

(recall that ω_n is the magnitude of the poles)

Overshoot in Frequency Domain Suppose we want $M_p \leq c$

Suppose we want $M_p \leq c$

$$M_p = \underbrace{\exp\left(-\frac{\pi\zeta}{\sqrt{1-\zeta^2}}\right)}_{\text{decreasing function}} \le c$$

Suppose we want $M_p \leq c$

$$M_p = \underbrace{\exp\left(-\frac{\pi\zeta}{\sqrt{1-\zeta^2}}\right)}_{\text{decreasing function}} \le c$$

- need large damping ratio

Suppose we want $M_p \leq c$

$$M_p = \underbrace{\exp\left(-\frac{\pi\zeta}{\sqrt{1-\zeta^2}}\right)}_{\text{decreasing function}} \le c$$

— need large damping ratio

Suppose we want $M_p \leq c$

$$M_p = \underbrace{\exp\left(-\frac{\pi\zeta}{\sqrt{1-\zeta^2}}\right)}_{\text{decreasing function}} \le c$$

— need large damping ratio

Suppose we want $M_p \leq c$

$$M_p = \underbrace{\exp\left(-\frac{\pi\zeta}{\sqrt{1-\zeta^2}}\right)}_{\text{decreasing function}} \le c$$

— need large damping ratio

Suppose we want $M_p \leq c$

$$M_p = \underbrace{\exp\left(-\frac{\pi\zeta}{\sqrt{1-\zeta^2}}\right)}_{\text{decreasing function}} \le c$$

— need large damping ratio

Settling Time in Frequency Domain

Suppose we want $t_s \leq c$

Settling Time in Frequency Domain

Suppose we want $t_s \leq c$

$$t_s \approx \frac{3}{\sigma} \le c \qquad \Longrightarrow \qquad \sigma \ge \frac{3}{c}$$

Settling Time in Frequency Domain

Suppose we want $t_s \leq c$

$$t_s \approx \frac{3}{\sigma} \le c \qquad \Longrightarrow \qquad \sigma \ge \frac{3}{c}$$

Want poles to be sufficiently fast (large enough magnitude of real part):

Intuition: poles far to the left \rightarrow transients decay faster \rightarrow smaller t_s

Combination of Specs

If we have specs for any combination of t_r, M_p, t_s , we can easily relate them to allowed pole locations:

The shape and size of the region for admissible pole locations will change depending on which specs are more severely constrained.

Combination of Specs

If we have specs for any combination of t_r, M_p, t_s , we can easily relate them to allowed pole locations:

The shape and size of the region for admissible pole locations will change depending on which specs are more severely constrained.

This is very appealing to engineers: easy to visualize things, no such crisp visualization in time domain.

Combination of Specs

If we have specs for any combination of t_r, M_p, t_s , we can easily relate them to allowed pole locations:

The shape and size of the region for admissible pole locations will change depending on which specs are more severely constrained.

This is very appealing to engineers: easy to visualize things, no such crisp visualization in time domain.

But: not very rigorous, and also only valid for our prototype 2nd-order system, which has only 2 poles and no zeros ...