Plan of the Lecture

- Review: prototype 2nd-order system
- Today's topic: transient response specifications

Plan of the Lecture

- Review: prototype 2nd-order system
- Today's topic: transient response specifications

Goal: develop formulas and intuition for various features of the transient response: rise time, overshoot, settling time.

Plan of the Lecture

- Review: prototype 2nd-order system
- Today's topic: transient response specifications

Goal: develop formulas and intuition for various features of the transient response: rise time, overshoot, settling time.

Reading: FPE, Sections 3.3-3.4; lab manual

Prototype 2nd-Order System

$$
H(s)=\frac{\omega_{n}^{2}}{s^{2}+2 \zeta \omega_{n} s+\omega_{n}^{2}}
$$

By the quadratic formula, the poles are:

$$
\begin{aligned}
s & =-\zeta \omega_{n} \pm \omega_{n} \sqrt{\zeta^{2}-1} \\
& =-\omega_{n}\left(\zeta \pm \sqrt{\zeta^{2}-1}\right)
\end{aligned}
$$

The nature of the poles changes depending on ζ :

- $\zeta>1$ both poles are real and negative
- $\zeta=1 \quad$ one negative pole
- $\zeta<1$ two complex poles with negative real parts

$$
s=-\sigma \pm j \omega_{d}
$$

where

$$
\sigma=\zeta \omega_{n}, \omega_{d}=\omega_{n} \sqrt{1-\zeta^{2}}
$$

Prototype 2nd-Order System

$$
H(s)=\frac{\omega_{n}^{2}}{s^{2}+2 \zeta \omega_{n} s+\omega_{n}^{2}}, \quad \zeta<1
$$

The poles are

$$
s=-\zeta \omega_{n} \pm j \omega_{n} \sqrt{1-\zeta^{2}}=-\sigma \pm j \omega_{d}
$$

Note that

$$
\begin{aligned}
\sigma^{2}+\omega_{d}^{2} & =\zeta^{2} \omega_{n}^{2}+\omega_{n}^{2}-\zeta^{2} \omega_{n}^{2} \\
& =\omega_{n}^{2} \\
\cos \varphi & =\frac{\zeta \omega_{n}}{\omega_{n}}=\zeta
\end{aligned}
$$

2nd-Order Response

Let's compute the system's impulse and step response:

2nd-Order Response

Let's compute the system's impulse and step response:

$$
H(s)=\frac{\omega_{n}^{2}}{s^{2}+2 \zeta \omega_{n} s+\omega_{n}^{2}}=\frac{\omega_{n}^{2}}{(s+\sigma)^{2}+\omega_{d}^{2}}
$$

2nd-Order Response

Let's compute the system's impulse and step response:

$$
H(s)=\frac{\omega_{n}^{2}}{s^{2}+2 \zeta \omega_{n} s+\omega_{n}^{2}}=\frac{\omega_{n}^{2}}{(s+\sigma)^{2}+\omega_{d}^{2}}
$$

- Impulse response:

$$
h(t)=\mathscr{L}^{-1}\{H(s)\}=\mathscr{L}^{-1}\left\{\frac{\omega_{n}^{2}}{(s+\sigma)^{2}+\omega_{d}^{2}}\right\}
$$

2nd-Order Response

Let's compute the system's impulse and step response:

$$
H(s)=\frac{\omega_{n}^{2}}{s^{2}+2 \zeta \omega_{n} s+\omega_{n}^{2}}=\frac{\omega_{n}^{2}}{(s+\sigma)^{2}+\omega_{d}^{2}}
$$

- Impulse response:

$$
h(t)=\mathscr{L}^{-1}\{H(s)\}=\mathscr{L}^{-1}\left\{\frac{\left(\omega_{n}^{2} / \omega_{d}\right) \omega_{d}}{(s+\sigma)^{2}+\omega_{d}^{2}}\right\}
$$

2nd-Order Response

Let's compute the system's impulse and step response:

$$
H(s)=\frac{\omega_{n}^{2}}{s^{2}+2 \zeta \omega_{n} s+\omega_{n}^{2}}=\frac{\omega_{n}^{2}}{(s+\sigma)^{2}+\omega_{d}^{2}}
$$

- Impulse response:

$$
\begin{aligned}
h(t) & =\mathscr{L}^{-1}\{H(s)\}=\mathscr{L}^{-1}\left\{\frac{\left(\omega_{n}^{2} / \omega_{d}\right) \omega_{d}}{(s+\sigma)^{2}+\omega_{d}^{2}}\right\} \\
& =\frac{\omega_{n}^{2}}{\omega_{d}} e^{-\sigma t} \sin \left(\omega_{d} t\right)
\end{aligned}
$$

2nd-Order Response

Let's compute the system's impulse and step response:

$$
H(s)=\frac{\omega_{n}^{2}}{s^{2}+2 \zeta \omega_{n} s+\omega_{n}^{2}}=\frac{\omega_{n}^{2}}{(s+\sigma)^{2}+\omega_{d}^{2}}
$$

- Impulse response:

$$
\begin{aligned}
h(t) & =\mathscr{L}^{-1}\{H(s)\}=\mathscr{L}^{-1}\left\{\frac{\left(\omega_{n}^{2} / \omega_{d}\right) \omega_{d}}{(s+\sigma)^{2}+\omega_{d}^{2}}\right\} \\
& =\frac{\omega_{n}^{2}}{\omega_{d}} e^{-\sigma t} \sin \left(\omega_{d} t\right) \quad(\text { table }, \# 20)
\end{aligned}
$$

2nd-Order Response

Let's compute the system's impulse and step response:

$$
H(s)=\frac{\omega_{n}^{2}}{s^{2}+2 \zeta \omega_{n} s+\omega_{n}^{2}}=\frac{\omega_{n}^{2}}{(s+\sigma)^{2}+\omega_{d}^{2}}
$$

- Impulse response:

$$
\begin{aligned}
h(t) & =\mathscr{L}^{-1}\{H(s)\}=\mathscr{L}^{-1}\left\{\frac{\left(\omega_{n}^{2} / \omega_{d}\right) \omega_{d}}{(s+\sigma)^{2}+\omega_{d}^{2}}\right\} \\
& =\frac{\omega_{n}^{2}}{\omega_{d}} e^{-\sigma t} \sin \left(\omega_{d} t\right) \quad(\text { table }, \# 20)
\end{aligned}
$$

- Step response:

$$
\mathscr{L}^{-1}\left\{\frac{H(s)}{s}\right\}=\mathscr{L}^{-1}\left\{\frac{\omega_{n}^{2}}{s\left[(s+\sigma)^{2}+\omega_{d}^{2}\right]}\right\}
$$

2nd-Order Response

Let's compute the system's impulse and step response:

$$
H(s)=\frac{\omega_{n}^{2}}{s^{2}+2 \zeta \omega_{n} s+\omega_{n}^{2}}=\frac{\omega_{n}^{2}}{(s+\sigma)^{2}+\omega_{d}^{2}}
$$

- Impulse response:

$$
\begin{aligned}
h(t) & =\mathscr{L}^{-1}\{H(s)\}=\mathscr{L}^{-1}\left\{\frac{\left(\omega_{n}^{2} / \omega_{d}\right) \omega_{d}}{(s+\sigma)^{2}+\omega_{d}^{2}}\right\} \\
& =\frac{\omega_{n}^{2}}{\omega_{d}} e^{-\sigma t} \sin \left(\omega_{d} t\right) \quad(\text { table }, \# 20)
\end{aligned}
$$

- Step response:

$$
\mathscr{L}^{-1}\left\{\frac{H(s)}{s}\right\}=\mathscr{L}^{-1}\left\{\frac{\sigma^{2}+\omega_{d}^{2}}{s\left[(s+\sigma)^{2}+\omega_{d}^{2}\right]}\right\}
$$

2nd-Order Response

Let's compute the system's impulse and step response:

$$
H(s)=\frac{\omega_{n}^{2}}{s^{2}+2 \zeta \omega_{n} s+\omega_{n}^{2}}=\frac{\omega_{n}^{2}}{(s+\sigma)^{2}+\omega_{d}^{2}}
$$

- Impulse response:

$$
\begin{aligned}
h(t) & =\mathscr{L}^{-1}\{H(s)\}=\mathscr{L}^{-1}\left\{\frac{\left(\omega_{n}^{2} / \omega_{d}\right) \omega_{d}}{(s+\sigma)^{2}+\omega_{d}^{2}}\right\} \\
& =\frac{\omega_{n}^{2}}{\omega_{d}} e^{-\sigma t} \sin \left(\omega_{d} t\right) \quad(\text { table }, \# 20)
\end{aligned}
$$

- Step response:

$$
\begin{aligned}
& \mathscr{L}^{-1}\left\{\frac{H(s)}{s}\right\}=\mathscr{L}^{-1}\left\{\frac{\sigma^{2}+\omega_{d}^{2}}{s\left[(s+\sigma)^{2}+\omega_{d}^{2}\right]}\right\} \\
& =1-e^{-\sigma t}\left(\cos \left(\omega_{d} t\right)+\frac{\sigma}{\omega_{d}} \sin \left(\omega_{d} t\right)\right)
\end{aligned}
$$

2nd-Order Response

Let's compute the system's impulse and step response:

$$
H(s)=\frac{\omega_{n}^{2}}{s^{2}+2 \zeta \omega_{n} s+\omega_{n}^{2}}=\frac{\omega_{n}^{2}}{(s+\sigma)^{2}+\omega_{d}^{2}}
$$

- Impulse response:

$$
\begin{aligned}
h(t) & =\mathscr{L}^{-1}\{H(s)\}=\mathscr{L}^{-1}\left\{\frac{\left(\omega_{n}^{2} / \omega_{d}\right) \omega_{d}}{(s+\sigma)^{2}+\omega_{d}^{2}}\right\} \\
& =\frac{\omega_{n}^{2}}{\omega_{d}} e^{-\sigma t} \sin \left(\omega_{d} t\right) \quad(\text { table }, \# 20)
\end{aligned}
$$

- Step response:

$$
\begin{array}{r}
\mathscr{L}^{-1}\left\{\frac{H(s)}{s}\right\}=\mathscr{L}^{-1}\left\{\frac{\sigma^{2}+\omega_{d}^{2}}{s\left[(s+\sigma)^{2}+\omega_{d}^{2}\right]}\right\} \\
=1-e^{-\sigma t}\left(\cos \left(\omega_{d} t\right)+\frac{\sigma}{\omega_{d}} \sin \left(\omega_{d} t\right)\right) \quad(\text { table, \#21) }
\end{array}
$$

2nd-Order Step Response

$$
\begin{aligned}
H(s) & =\frac{\omega_{n}^{2}}{s^{2}+2 \zeta \omega_{n} s+\omega_{n}^{2}}=\frac{\omega_{n}^{2}}{(s+\sigma)^{2}+\omega_{d}^{2}} \\
u(t) & =1(t) \quad \longrightarrow \quad y(t)=1-e^{-\sigma t}\left(\cos \left(\omega_{d} t\right)+\frac{\sigma}{\omega_{d}} \sin \left(\omega_{d} t\right)\right)
\end{aligned}
$$

where $\sigma=\zeta \omega_{n}$ and $\omega_{d}=\omega_{n} \sqrt{1-\zeta^{2}}$ (damped frequency)

2nd-Order Step Response

$$
\begin{aligned}
H(s) & =\frac{\omega_{n}^{2}}{s^{2}+2 \zeta \omega_{n} s+\omega_{n}^{2}}=\frac{\omega_{n}^{2}}{(s+\sigma)^{2}+\omega_{d}^{2}} \\
u(t) & =1(t) \quad \longrightarrow \quad y(t)=1-e^{-\sigma t}\left(\cos \left(\omega_{d} t\right)+\frac{\sigma}{\omega_{d}} \sin \left(\omega_{d} t\right)\right)
\end{aligned}
$$

where $\sigma=\zeta \omega_{n}$ and $\omega_{d}=\omega_{n} \sqrt{1-\zeta^{2}}$ (damped frequency)

The parameter ζ is called the damping ratio

- $\zeta>1$: system is overdamped
- $\zeta<1$: system is underdamped
- $\zeta=0$: no damping $\left(\omega_{d}=\omega_{n}\right)$

2nd-Order Step Response

$$
\begin{aligned}
H(s) & =\frac{\omega_{n}^{2}}{s^{2}+2 \zeta \omega_{n} s+\omega_{n}^{2}}=\frac{\omega_{n}^{2}}{(s+\sigma)^{2}+\omega_{d}^{2}} \\
u(t) & =1(t) \quad \longrightarrow \quad y(t)=1-e^{-\sigma t}\left(\cos \left(\omega_{d} t\right)+\frac{\sigma}{\omega_{d}} \sin \left(\omega_{d} t\right)\right)
\end{aligned}
$$

where $\sigma=\zeta \omega_{n}$ and $\omega_{d}=\omega_{n} \sqrt{1-\zeta^{2}}$ (damped frequency)

2nd-Order Step Response

$$
\begin{aligned}
H(s) & =\frac{\omega_{n}^{2}}{s^{2}+2 \zeta \omega_{n} s+\omega_{n}^{2}}=\frac{\omega_{n}^{2}}{(s+\sigma)^{2}+\omega_{d}^{2}} \\
u(t) & =1(t) \quad \longrightarrow \quad y(t)=1-e^{-\sigma t}\left(\cos \left(\omega_{d} t\right)+\frac{\sigma}{\omega_{d}} \sin \left(\omega_{d} t\right)\right)
\end{aligned}
$$

where $\sigma=\zeta \omega_{n}$ and $\omega_{d}=\omega_{n} \sqrt{1-\zeta^{2}}$ (damped frequency)
We will see that the parameters ζ and ω_{n} determine certain important features of the transient part of the above step response.

2nd-Order Step Response

$$
\begin{aligned}
H(s) & =\frac{\omega_{n}^{2}}{s^{2}+2 \zeta \omega_{n} s+\omega_{n}^{2}}=\frac{\omega_{n}^{2}}{(s+\sigma)^{2}+\omega_{d}^{2}} \\
u(t) & =1(t) \quad \longrightarrow \quad y(t)=1-e^{-\sigma t}\left(\cos \left(\omega_{d} t\right)+\frac{\sigma}{\omega_{d}} \sin \left(\omega_{d} t\right)\right)
\end{aligned}
$$

where $\sigma=\zeta \omega_{n}$ and $\omega_{d}=\omega_{n} \sqrt{1-\zeta^{2}}$ (damped frequency)
We will see that the parameters ζ and ω_{n} determine certain important features of the transient part of the above step response.

We will also learn how to pick ζ and ω_{n} in order to shape these features according to given specifications.

Transient Response Specifications: Rise Time

Let's first take a look at 1st-order step response

Transient Response Specifications: Rise Time

Let's first take a look at 1st-order step response

$$
H(s)=\frac{a}{s+a}, \quad a>0
$$

Transient Response Specifications: Rise Time

Let's first take a look at 1st-order step response

$$
H(s)=\frac{a}{s+a}, \quad a>0 \quad \text { (stable pole) }
$$

Transient Response Specifications: Rise Time

Let's first take a look at 1st-order step response

$$
H(s)=\frac{a}{s+a}, \quad a>0 \quad \text { (stable pole) }
$$

DC gain $=1$ (by FVT)

Transient Response Specifications: Rise Time

Let's first take a look at 1st-order step response

$$
H(s)=\frac{a}{s+a}, \quad a>0 \quad \text { (stable pole) }
$$

DC gain $=1$ (by FVT)
Step response:

Transient Response Specifications: Rise Time

Let's first take a look at 1st-order step response

$$
H(s)=\frac{a}{s+a}, \quad a>0 \quad \text { (stable pole) }
$$

DC gain $=1$ (by FVT)
Step response: $\quad Y(s)=\frac{H(s)}{s}=\frac{a}{s(s+a)}=\frac{1}{s}-\frac{1}{s+a}$

Transient Response Specifications: Rise Time

Let's first take a look at 1 st-order step response

$$
H(s)=\frac{a}{s+a}, \quad a>0 \quad \text { (stable pole) }
$$

DC gain $=1$ (by FVT)
Step response: $\quad Y(s)=\frac{H(s)}{s}=\frac{a}{s(s+a)}=\frac{1}{s}-\frac{1}{s+a}$

$$
y(t)=\mathscr{L}^{-1}\{Y(s)\}=1(t)-e^{-a t}
$$

Transient Response Specifications: Rise Time

Let's first take a look at 1 st-order step response

$$
H(s)=\frac{a}{s+a}, \quad a>0 \quad \text { (stable pole) }
$$

DC gain $=1$ (by FVT)
Step response: $\quad Y(s)=\frac{H(s)}{s}=\frac{a}{s(s+a)}=\frac{1}{s}-\frac{1}{s+a}$

$$
y(t)=\mathscr{L}^{-1}\{Y(s)\}=1(t)-e^{-a t}
$$

Transient Response Specifications: Rise Time

Let's first take a look at 1st-order step response

$$
H(s)=\frac{a}{s+a}, \quad a>0 \quad \text { (stable pole) }
$$

DC gain $=1$ (by FVT)

$$
\begin{aligned}
\text { Step response: } & Y(s)
\end{aligned}=\frac{H(s)}{s}=\frac{a}{s(s+a)}=\frac{1}{s}-\frac{1}{s+a}
$$

Rise time t_{r} : the time it takes to get from 10% of steady-state value to 90%

Rise Time

Step response: $y(t)=1(t)-e^{-a t}$

Rise time t_{r} : the time it takes to get from 10% of steady-state value to 90%

Rise Time

Step response: $y(t)=1(t)-e^{-a t}$

Rise time t_{r} : the time it takes to get from 10% of steady-state value to 90%

Examples of rise time:

- car - going from 0 to 60 mph in 7 sec
- oven - reach desired preheat temperature quickly
- thermostat, building climate control
- other examples?

Rise Time

Step response: $y(t)=1(t)-e^{-a t}$

> Rise time $t_{r}:$ the time it takes to get from 10% of steady-state value to 90%

In this example, it is easy to compute t_{r} analytically:

Rise Time

Step response: $y(t)=1(t)-e^{-a t}$

Rise time t_{r} : the time it takes to get from 10% of steady-state value to 90%

In this example, it is easy to compute t_{r} analytically:

$$
1-e^{-a t_{0.1}}=0.1 \quad e^{-a t_{0.1}}=0.9 \quad t_{0.1}=-\frac{\ln 0.9}{a}
$$

Rise Time

Step response: $y(t)=1(t)-e^{-a t}$

Rise time t_{r} : the time it takes to get from 10% of steady-state value to 90%

In this example, it is easy to compute t_{r} analytically:

$$
\begin{array}{lll}
1-e^{-a t_{0.1}}=0.1 & e^{-a t_{0.1}}=0.9 & t_{0.1}=-\frac{\ln 0.9}{a} \\
1-e^{-a t_{0.9}}=0.9 & e^{-a t_{0.9}}=0.1 & t_{0.9}=-\frac{\ln 0.1}{a}
\end{array}
$$

Rise Time

Step response: $y(t)=1(t)-e^{-a t}$

Rise time t_{r} : the time it takes to get from 10% of steady-state value to 90%

In this example, it is easy to compute t_{r} analytically:

$$
\begin{aligned}
& 1-e^{-a t_{0.1}}=0.1 \quad e^{-a t_{0.1}}=0.9 \quad t_{0.1}=-\frac{\ln 0.9}{a} \\
& 1-e^{-a t_{0.9}}=0.9 \quad e^{-a t_{0.9}}=0.1 \quad t_{0.9}=-\frac{\ln 0.1}{a} \\
& t_{r}=t_{0.9}-t_{0.1}=\frac{\ln 0.9-\ln 0.1}{a}=\frac{\ln 9}{a} \approx \frac{2.2}{a}
\end{aligned}
$$

Transient Response Specs

Now let's consider the more interesting case: $2 n d$-order response

$$
H(s)=\frac{\omega_{n}^{2}}{s^{2}+2 \zeta \omega_{n} s+\omega_{n}^{2}}=\frac{\omega_{n}^{2}}{(s+\sigma)^{2}+\omega_{d}^{2}}
$$

where $\sigma=\zeta \omega_{n} \omega_{d}=\omega_{n} \sqrt{1-\zeta^{2}} \quad(\zeta<1)$

Transient Response Specs

Now let's consider the more interesting case: $2 n d$-order response

$$
H(s)=\frac{\omega_{n}^{2}}{s^{2}+2 \zeta \omega_{n} s+\omega_{n}^{2}}=\frac{\omega_{n}^{2}}{(s+\sigma)^{2}+\omega_{d}^{2}}
$$

where $\sigma=\zeta \omega_{n} \omega_{d}=\omega_{n} \sqrt{1-\zeta^{2}} \quad(\zeta<1)$

Transient Response Specs

Now let's consider the more interesting case: $2 n d$-order response

$$
H(s)=\frac{\omega_{n}^{2}}{s^{2}+2 \zeta \omega_{n} s+\omega_{n}^{2}}=\frac{\omega_{n}^{2}}{(s+\sigma)^{2}+\omega_{d}^{2}}
$$

where $\sigma=\zeta \omega_{n} \omega_{d}=\omega_{n} \sqrt{1-\zeta^{2}} \quad(\zeta<1)$

Step response: $\quad y(t)=1-e^{-\sigma t}\left(\cos \left(\omega_{d} t\right)+\frac{\sigma}{\omega_{d}} \sin \left(\omega_{d} t\right)\right)$

Transient-Response Specs

Step response: $\quad y(t)=1-e^{-\sigma t}\left(\cos \left(\omega_{d} t\right)+\frac{\sigma}{\omega_{d}} \sin \left(\omega_{d} t\right)\right)$

Transient-Response Specs

Step response: $\quad y(t)=1-e^{-\sigma t}\left(\cos \left(\omega_{d} t\right)+\frac{\sigma}{\omega_{d}} \sin \left(\omega_{d} t\right)\right)$

- rise time t_{r} — time to get from $0.1 y(\infty)$ to $0.9 y(\infty)$
- overshoot M_{p} and peak time t_{p}
- settling time t_{s} - first time for transients to decay to within a specified small percentage of $y(\infty)$ and stay in that range (we will usually worry about 5% settling time)

Transient-Response Specs

Step response: $\quad y(t)=1-e^{-\sigma t}\left(\cos \left(\omega_{d} t\right)+\frac{\sigma}{\omega_{d}} \sin \left(\omega_{d} t\right)\right)$

- rise time t_{r} — time to get from $0.1 y(\infty)$ to $0.9 y(\infty)$
- overshoot M_{p} and peak time t_{p}
- settling time t_{s} - first time for transients to decay to within a specified small percentage of $y(\infty)$ and stay in that range (we will usually worry about 5% settling time)

Transient-Response (or Time-Domain) Specs

Transient-Response (or Time-Domain) Specs

Do we want these quantities to be large or small?

Transient-Response (or Time-Domain) Specs

Do we want these quantities to be large or small?

- t_{r}

Transient-Response (or Time-Domain) Specs

Do we want these quantities to be large or small?

- t_{r} small

Transient-Response (or Time-Domain) Specs

Do we want these quantities to be large or small?

- t_{r} small
- M_{p}

Transient-Response (or Time-Domain) Specs

Do we want these quantities to be large or small?

- t_{r} small
- M_{p} small

Transient-Response (or Time-Domain) Specs

Do we want these quantities to be large or small?

- t_{r} small
- M_{p} small
- t_{p}

Transient-Response (or Time-Domain) Specs

Do we want these quantities to be large or small?

- t_{r} small
- M_{p} small
- t_{p} small

Transient-Response (or Time-Domain) Specs

Do we want these quantities to be large or small?

- t_{r} small
- M_{p} small
- t_{p} small
- t_{s}

Transient-Response (or Time-Domain) Specs

Do we want these quantities to be large or small?

- t_{r} small
- M_{p} small
- t_{p} small
- t_{s} small

Transient-Response (or Time-Domain) Specs

Do we want these quantities to be large or small?

- t_{r} small
- M_{p} small
- t_{p} small
- t_{s} small

Trade-offs among specs:

Transient-Response (or Time-Domain) Specs

Do we want these quantities to be large or small?

- t_{r} small
- M_{p} small
- t_{p} small
- t_{s} small

Trade-offs among specs: decrease $t_{r} \longrightarrow$ increase M_{p}, etc.

Formulas for TD Specs: Rise Time

Formulas for TD Specs: Rise Time

Rise time t_{r} - hard to calculate analytically.

Formulas for TD Specs: Rise Time

Rise time t_{r} - hard to calculate analytically.
Empirically, on the normalized time scale $\left(t \rightarrow \omega_{n} t\right)$, rise times are approximately the same

Formulas for TD Specs: Rise Time

Rise time t_{r} - hard to calculate analytically.
Empirically, on the normalized time scale $\left(t \rightarrow \omega_{n} t\right)$, rise times are approximately the same

$$
w_{n} t_{r} \approx 1.8 \quad(\text { exact for } \zeta=0.5)
$$

Formulas for TD Specs: Rise Time

Rise time t_{r} - hard to calculate analytically.
Empirically, on the normalized time scale $\left(t \rightarrow \omega_{n} t\right)$, rise times are approximately the same

$$
w_{n} t_{r} \approx 1.8 \quad(\text { exact for } \zeta=0.5)
$$

So, we will work with $t_{r} \approx \frac{1.8}{\omega_{n}} \quad(\operatorname{good}$ approx. when $\zeta \approx 0.5)$

Formulas for TD Specs: Overshoot \& Peak Time

Formulas for TD Specs: Overshoot \& Peak Time

t_{p} is the first time $t>0$ when $y^{\prime}(t)=0$

Formulas for TD Specs: Overshoot \& Peak Time

t_{p} is the first time $t>0$ when $y^{\prime}(t)=0$

$$
y(t)=1-e^{-\sigma t}\left(\cos \left(\omega_{d} t\right)+\frac{\sigma}{\omega_{d}} \sin \left(\omega_{d} t\right)\right)
$$

Formulas for TD Specs: Overshoot \& Peak Time

t_{p} is the first time $t>0$ when $y^{\prime}(t)=0$

$$
\begin{aligned}
y(t) & =1-e^{-\sigma t}\left(\cos \left(\omega_{d} t\right)+\frac{\sigma}{\omega_{d}} \sin \left(\omega_{d} t\right)\right) \\
y^{\prime}(t) & =\left(\frac{\sigma^{2}}{\omega_{d}}+\omega_{d}\right) e^{-\sigma t} \sin \left(\omega_{d} t\right)
\end{aligned}
$$

Formulas for TD Specs: Overshoot \& Peak Time

t_{p} is the first time $t>0$ when $y^{\prime}(t)=0$

$$
\begin{aligned}
y(t) & =1-e^{-\sigma t}\left(\cos \left(\omega_{d} t\right)+\frac{\sigma}{\omega_{d}} \sin \left(\omega_{d} t\right)\right) \\
y^{\prime}(t) & =\left(\frac{\sigma^{2}}{\omega_{d}}+\omega_{d}\right) e^{-\sigma t} \sin \left(\omega_{d} t\right)=0 \text { when } \omega_{d} t=0, \pi, 2 \pi, \ldots
\end{aligned}
$$

Formulas for TD Specs: Overshoot \& Peak Time

t_{p} is the first time $t>0$ when $y^{\prime}(t)=0$

$$
\begin{aligned}
y(t) & =1-e^{-\sigma t}\left(\cos \left(\omega_{d} t\right)+\frac{\sigma}{\omega_{d}} \sin \left(\omega_{d} t\right)\right) \\
y^{\prime}(t) & =\left(\frac{\sigma^{2}}{\omega_{d}}+\omega_{d}\right) e^{-\sigma t} \sin \left(\omega_{d} t\right)=0 \text { when } \omega_{d} t=0, \pi, 2 \pi, \ldots
\end{aligned}
$$

so $t_{p}=\frac{\pi}{\omega_{d}}$

Formulas for TD Specs: Overshoot \& Peak Time

Formulas for TD Specs: Overshoot \& Peak Time

We have just computed $t_{p}=\frac{\pi}{\omega_{d}}$

Formulas for TD Specs: Overshoot \& Peak Time

We have just computed $t_{p}=\frac{\pi}{\omega_{d}}$
To find M_{p}, plug this value into $y(t)$:

Formulas for TD Specs: Overshoot \& Peak Time

We have just computed $t_{p}=\frac{\pi}{\omega_{d}}$
To find M_{p}, plug this value into $y(t)$:

$$
M_{p}=y\left(t_{p}\right)-1
$$

Formulas for TD Specs: Overshoot \& Peak Time

We have just computed $t_{p}=\frac{\pi}{\omega_{d}}$
To find M_{p}, plug this value into $y(t)$:

$$
M_{p}=y\left(t_{p}\right)-1=-e^{-\frac{\sigma \pi}{\omega_{d}}}\left(\cos \left(\omega_{d} \frac{\pi}{\omega_{d}}\right)+\frac{\sigma}{\omega_{d}} \sin \left(\omega_{d} \frac{\pi}{\omega_{d}}\right)\right)
$$

Formulas for TD Specs: Overshoot \& Peak Time

We have just computed $t_{p}=\frac{\pi}{\omega_{d}}$
To find M_{p}, plug this value into $y(t)$:

$$
\begin{aligned}
M_{p} & =y\left(t_{p}\right)-1=-e^{-\frac{\sigma \pi}{\omega_{d}}}\left(\cos \left(\omega_{d} \frac{\pi}{\omega_{d}}\right)+\frac{\sigma}{\omega_{d}} \sin \left(\omega_{d} \frac{\pi}{\omega_{d}}\right)\right) \\
& =\exp \left(-\frac{\sigma \pi}{\omega_{d}}\right)
\end{aligned}
$$

Formulas for TD Specs: Overshoot \& Peak Time

We have just computed $t_{p}=\frac{\pi}{\omega_{d}}$
To find M_{p}, plug this value into $y(t)$:

$$
\begin{aligned}
M_{p} & =y\left(t_{p}\right)-1=-e^{-\frac{\sigma \pi}{\omega_{d}}}\left(\cos \left(\omega_{d} \frac{\pi}{\omega_{d}}\right)+\frac{\sigma}{\omega_{d}} \sin \left(\omega_{d} \frac{\pi}{\omega_{d}}\right)\right) \\
& =\exp \left(-\frac{\sigma \pi}{\omega_{d}}\right)=\exp \left(-\frac{\pi \zeta}{\sqrt{1-\zeta^{2}}}\right) \quad \text { - exact formula }
\end{aligned}
$$

Formulas for TD Specs: Settling Time

Formulas for TD Specs: Settling Time

$$
\begin{aligned}
& t_{s}=\min \left\{t>0: \frac{\left|y\left(t^{\prime}\right)-y(\infty)\right|}{y(\infty)} \leq 0.05 \text { for all } t^{\prime} \geq t\right\} \text { (here, } \\
& y(\infty)=1)
\end{aligned}
$$

Formulas for TD Specs: Settling Time

$$
\begin{aligned}
& t_{s}=\min \left\{t>0: \frac{\left|y\left(t^{\prime}\right)-y(\infty)\right|}{y(\infty)} \leq 0.05 \text { for all } t^{\prime} \geq t\right\} \text { (here }, \\
& y(\infty)=1)
\end{aligned}
$$

$$
|y(t)-1|=e^{-\sigma t}\left|\cos \left(\omega_{d} t\right)+\frac{\sigma}{\omega_{d}} \sin \left(\omega_{d} t\right)\right|
$$

Formulas for TD Specs: Settling Time

$$
\begin{aligned}
& t_{s}=\min \left\{t>0: \frac{\left|y\left(t^{\prime}\right)-y(\infty)\right|}{y(\infty)} \leq 0.05 \text { for all } t^{\prime} \geq t\right\} \text { (here }, ~ \\
& y(\infty)=1)
\end{aligned}
$$

$$
|y(t)-1|=e^{-\sigma t}\left|\cos \left(\omega_{d} t\right)+\frac{\sigma}{\omega_{d}} \sin \left(\omega_{d} t\right)\right|
$$

here, $e^{-\sigma t}$ is what matters (\sin and cos are bounded between $\pm 1)$, so $e^{-\sigma t_{s}} \leq 0.05$

Formulas for TD Specs: Settling Time

$$
\begin{aligned}
& t_{s}=\min \left\{t>0: \frac{\left|y\left(t^{\prime}\right)-y(\infty)\right|}{y(\infty)} \leq 0.05 \text { for all } t^{\prime} \geq t\right\} \text { (here }, \\
& y(\infty)=1)
\end{aligned}
$$

$$
|y(t)-1|=e^{-\sigma t}\left|\cos \left(\omega_{d} t\right)+\frac{\sigma}{\omega_{d}} \sin \left(\omega_{d} t\right)\right|
$$

here, $e^{-\sigma t}$ is what matters (\sin and cos are bounded between
$\pm 1)$, so $e^{-\sigma t_{s}} \leq 0.05$
this gives $t_{s}=-\frac{\ln 0.05}{\sigma} \approx \frac{3}{\sigma}$

Formulas for TD Specs

$$
H(s)=\frac{\omega_{n}^{2}}{s^{2}+2 \zeta \omega_{n} s+\omega_{n}^{2}}=\frac{\sigma^{2}+\omega_{d}^{2}}{(s+\sigma)^{2}+\omega_{d}^{2}}
$$

$$
\begin{aligned}
t_{r} & \approx \frac{1.8}{\omega_{n}} \\
t_{p} & =\frac{\pi}{\omega_{d}} \\
M_{p} & =\exp \left(-\frac{\pi \zeta}{\sqrt{1-\zeta^{2}}}\right) \\
t_{s} & \approx \frac{3}{\sigma}
\end{aligned}
$$

TD Specs in Frequency Domain

We want to visualize time-domain specs in terms of admissible pole locations for the 2nd-order system

$$
H(s)=\frac{\omega_{n}^{2}}{s^{2}+2 \zeta \omega_{n} s+\omega_{n}^{2}}=\frac{\sigma^{2}+\omega_{d}^{2}}{(s+\sigma)^{2}+\omega_{d}^{2}}
$$

where $\sigma=\zeta \omega_{n}$

$$
\omega_{d}=\omega_{n} \sqrt{1-\zeta^{2}}
$$

Step response: $y(t)=1-e^{-\sigma t}\left(\cos \left(\omega_{d} t\right)+\frac{\sigma}{\omega_{d}} \sin \left(\omega_{d} t\right)\right)$

$$
\begin{aligned}
\omega_{n}^{2} & =\sigma^{2}+\omega_{d}^{2} \\
\zeta & =\cos \varphi
\end{aligned}
$$

Rise Time in Frequency Domain

Suppose we want $t_{r} \leq c \quad$ (c is some desired given value)

Rise Time in Frequency Domain

Suppose we want $t_{r} \leq c \quad$ (c is some desired given value)

$$
t_{r} \approx \frac{1.8}{\omega_{n}} \leq c \quad \Longrightarrow \quad \omega_{n} \geq \frac{1.8}{c}
$$

Rise Time in Frequency Domain

Suppose we want $t_{r} \leq c \quad(c$ is some desired given value)
$t_{r} \approx \frac{1.8}{\omega_{n}} \leq c \quad \Longrightarrow \quad \omega_{n} \geq \frac{1.8}{c}$
Geometrically, we want poles to lie in the shaded region:

(recall that ω_{n} is the magnitude of the poles)

Overshoot in Frequency Domain

Suppose we want $M_{p} \leq c$

Overshoot in Frequency Domain

Suppose we want $M_{p} \leq c$

$$
M_{p}=\underbrace{\exp \left(-\frac{\pi \zeta}{\sqrt{1-\zeta^{2}}}\right)}_{\text {decreasing function }} \leq c
$$

Overshoot in Frequency Domain

Suppose we want $M_{p} \leq c$

$$
M_{p}=\underbrace{\exp \left(-\frac{\pi \zeta}{\sqrt{1-\zeta^{2}}}\right)}_{\text {decreasing function }} \leq c
$$

- need large damping ratio

Overshoot in Frequency Domain

Suppose we want $M_{p} \leq c$

$$
M_{p}=\underbrace{\exp \left(-\frac{\pi \zeta}{\sqrt{1-\zeta^{2}}}\right)}_{\text {decreasing function }} \leq c
$$

— need large damping ratio

Geometrically, we want poles to lie in the shaded region:

Overshoot in Frequency Domain

Suppose we want $M_{p} \leq c$

$$
M_{p}=\underbrace{\exp \left(-\frac{\pi \zeta}{\sqrt{1-\zeta^{2}}}\right)}_{\text {decreasing function }} \leq c
$$

- need large damping ratio

Geometrically, we want poles to lie in the shaded region:

$$
\begin{aligned}
\frac{\zeta}{\sqrt{1-\zeta^{2}}} & =\frac{\omega_{n} \zeta}{\omega_{n} \sqrt{1-\zeta^{2}}} \\
& =\frac{\sigma}{\omega_{d}}=\cot \varphi
\end{aligned}
$$

Overshoot in Frequency Domain

Suppose we want $M_{p} \leq c$

$$
M_{p}=\underbrace{\exp \left(-\frac{\pi \zeta}{\sqrt{1-\zeta^{2}}}\right)}_{\text {decreasing function }} \leq c
$$

- need large damping ratio

Geometrically, we want poles to lie in the shaded region:

$$
\begin{aligned}
& \frac{\zeta}{\sqrt{1-\zeta^{2}}}=\frac{\omega_{n} \zeta}{\omega_{n} \sqrt{1-\zeta^{2}}} \\
& =\frac{\sigma}{\omega_{d}}=\cot \varphi \\
& \text { - need } \varphi \text { to be small }
\end{aligned}
$$

Overshoot in Frequency Domain

Suppose we want $M_{p} \leq c$

$$
M_{p}=\underbrace{\exp \left(-\frac{\pi \zeta}{\sqrt{1-\zeta^{2}}}\right)}_{\text {decreasing function }} \leq c
$$

- need large damping ratio

Geometrically, we want poles to lie in the shaded region:

$$
\begin{aligned}
& \qquad \begin{aligned}
\frac{\zeta}{\sqrt{1-\zeta^{2}}} & =\frac{\omega_{n} \zeta}{\omega_{n} \sqrt{1-\zeta^{2}}} \\
& =\frac{\sigma}{\omega_{d}}=\cot \varphi
\end{aligned} \\
& \text { - need } \varphi \text { to be small } \\
& \text { Intuition: good damping } \rightarrow \\
& \text { good decay in } 1 / 2 \text { period }
\end{aligned}
$$

Settling Time in Frequency Domain

Suppose we want $t_{s} \leq c$

Settling Time in Frequency Domain

Suppose we want $t_{s} \leq c$

$$
t_{s} \approx \frac{3}{\sigma} \leq c \quad \Longrightarrow \quad \sigma \geq \frac{3}{c}
$$

Settling Time in Frequency Domain

Suppose we want $t_{s} \leq c$
$t_{s} \approx \frac{3}{\sigma} \leq c \quad \Longrightarrow \quad \sigma \geq \frac{3}{c}$
Want poles to be sufficiently fast (large enough magnitude of real part):

Intuition: poles far to the left \rightarrow transients decay faster \rightarrow smaller t_{s}

Combination of Specs

If we have specs for any combination of t_{r}, M_{p}, t_{s}, we can easily relate them to allowed pole locations:

The shape and size of the region for admissible pole locations will change depending on which specs are more severely constrained.

Combination of Specs

If we have specs for any combination of t_{r}, M_{p}, t_{s}, we can easily relate them to allowed pole locations:

The shape and size of the region for admissible pole locations will change depending on which specs are more severely constrained.

This is very appealing to engineers: easy to visualize things, no such crisp visualization in time domain.

Combination of Specs

If we have specs for any combination of t_{r}, M_{p}, t_{s}, we can easily relate them to allowed pole locations:

The shape and size of the region for admissible pole locations will change depending on which specs are more severely constrained.

This is very appealing to engineers: easy to visualize things, no such crisp visualization in time domain.

But: not very rigorous, and also only valid for our prototype 2nd-order system, which has only 2 poles and no zeros ...

