
Plan of the Lecture

I Review: transient and steady-state response; DC gain and
the FVT

I Today’s topic: system-modeling diagrams; prototype
2nd-order system

Goal: develop a methodology for representing and analyzing
systems by means of block diagrams; start analyzing a
prototype 2nd-order system.

Reading: FPE, Sections 3.1–3.2; lab manual
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large system
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compose

smaller blocks (subsystems)

— this is the core of systems theory

We will take smaller blocks from some given library and play
with them to create/build more complicated systems.
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All-Integrator Diagrams

Our library will consist of three building blocks:

ẏ y1/s
(or sY ) (or Y )

u1 y
= u1 � u2

u2

+

�

u y = aua

integrator summing junction constant gain

Two warnings:

I We can (and will) work either with u, y (time domain) or
with U, Y (s-domain) — will often go back and forth

I When working with block diagrams, we typically ignore
initial conditions.

This is the lowest level we will go to in lectures; in the labs, you
will implement these blocks using op amps.
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Example 3

Build an all-integrator diagram for a system with transfer
function

H(s) =
b1s+ b0

s2 + a1s+ a0

Step 1: decompose H(s) =
1

s2 + a1s+ a0
· (b1s+ b0)

U Y
1

s2 + a1s + a0
b1s + b0

X

— here, X is an auxiliary (or intermediate) signal

Note: b0 + b1s involves differentiation, which we cannot
implement using an all-integrator diagram. But we will see that
we don’t need to do it directly.
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Step 3: now we notice that

Y (s) = b1sX(s) + b0X(s),

and both X and sX are available signals in our diagram. So:
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Can we write down a state-space model corresponding to this
diagram?
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1/s 1/s
sX X+

�

a1

a0

�U
s2X +

+

b1

b0 Y

State-space model:

s2X = U − a1sX − a0X
ẍ = −a1ẋ− a0x+ u

Y = b1sX + b0X

y = b1ẋ+ b0x
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Example 3, continued

State-space model:

ẍ = −a1ẋ− a0x+ u y = b1ẋ+ b0x

x1 = x, x2 = ẋ

(
ẋ1
ẋ2

)
=

(
0 1
−a0 −a1

)(
x1
x2

)
+

(
0
1

)
u y =

(
b0 b1

)(x1
x2

)

This is called controller canonical form.

I Easily generalizes to dimension > 1

I The reason behind the name will be made clear later in the
semester
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x1 = x, x2 = ẋ

(
ẋ1
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ẍ = −a1ẋ− a0x+ u y = b1ẋ+ b0x
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ẋ2

)
=

(
0 1
−a0 −a1

)(
x1
x2

)
+

(
0
1

)
u y =

(
b0 b1

)(x1
x2

)

This is called controller canonical form.

I Easily generalizes to dimension > 1

I The reason behind the name will be made clear later in the
semester



Example 3, wrap-up

All-integrator diagram for H(s) =
b1s+ b0

s2 + a1s+ a0

1/s 1/s
sX X+

�

a1

a0

�U
s2X +

+

b1

b0 Y

State-space model:

(
ẋ1
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once we build a diagram, the state-space equations are unique
(up to coordinate transformations).
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Basic System Interconnections

Now we will take this a level higher — we will talk about
building complex systems from smaller blocks, without
worrying about how those blocks look on the inside (they could
themselves be all-integrator diagrams, etc.)

Block diagrams are an abstraction (they hide unnecessary
“low-level” detail ...)

Block diagrams describe the flow of information
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Basic System Interconnections: Series & Parallel

Series connection

G1U YG2
(G is common

notation for t.f.’s)

Y

U
= G1G2

G1G2U Y

(for SISO systems, the order of G1 and G2

does not matter)
Parallel connection

G1

U Y

G2

+
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= G1 +G2
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Basic System Interconnections: Negative Feedback
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Find the transfer function from R
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=⇒ Y =
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1 +G1G2
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U Y
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G1
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+
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1 +G1G2
R

The gain of a negative feedback loop:

forward gain

1 + loop gain

This is an important relationship, easy to derive — no need to
memorize it.
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Unity Feedback

Other feedback configurations are also possible:

G1
U

YG2
+
�R

E

This is called unity feedback — no component on the feedback
path.

Common structure (saw this in Lecture 1):

I R = reference

I U = control input

I Y = output

I E = error

I G1 = plant (also denoted by P )

I G2 = controller or compensator (also denoted by C or K)
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Let’s practice with deriving transfer functions:
forward gain

1 + loop gain
I Reference R to output Y :

Y

R
=

G1G2

1 +G1G2

I Reference R to control input U :

U

R
=

G2

1 +G1G2

I Error E to output Y :

Y

E
= G1G2 (no feedback path)
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Block Diagram Reduction

Given a complicated diagram involving series, parallel, and
feedback interconnections, we often want to write down an
overall transfer function from one of the variables to another.

This requires lots of practice: read FPE, Section 3.2 for
examples.

General strategy:

I Name all the variables in the diagram

I Write down as many relationships between these variables
as you can

I Learn to recognize series, parallel, and feedback
interconnections

I Replace them by their equivalents

I Repeat
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Prototype 2nd-Order System

So far, we have only seen transfer functions that have either
real poles or purely imaginary poles:

1

s+ a
,

1

(s+ a)(s+ b)
,

1

s2 + ω2

We also need to consider the case of complex poles, i.e., ones
that have Re(s) 6= 0 and Im(s) 6= 0.

For now, we will only look at second-order systems, but this will
be sufficient to develop some nontrivial intuition (dominant
poles).

Plus, you will need this for Lab 1.
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Prototype 2nd-Order System

Consider the following transfer function:

H(s) =
ω2
n

s2 + 2ζωns+ ω2
n

Comments:

I ζ > 0, ωn > 0 are arbitrary parameters

I the denominator is a general 2nd-degree monic polynomial,
just written in a weird way

I H(s) is normalized to have DC gain = 1 (provided DC gain
exists)
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Prototype 2nd-Order System

H(s) =
ω2
n

s2 + 2ζωns+ ω2
n

By the quadratic formula, the poles are:

s = −ζωn ± ωn
√
ζ2 − 1

= −ωn
(
ζ ±

√
ζ2 − 1

)

The nature of the poles changes depending on ζ:

I ζ > 1 both poles are real and negative

I ζ = 1 one negative pole

I ζ < 1 two complex poles with negative real parts

s = −σ ± jωd
where σ = ζωn, ωd = ωn

√
1− ζ2
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2nd-Order Response
Let’s compute the system’s impulse and step response:

H(s) =
ω2
n

s2 + 2ζωns+ ω2
n

=
ω2
n

(s+ σ)2 + ω2
d

I Impulse response:

h(t) = L −1{H(s)} = L −1

{
ω2
n

(s+ σ)2 + ω2
d

}

=
ω2
n

ωd
e−σt sin(ωdt) (table, # 20)

I Step response:

L −1

{
H(s)

s

}
= L −1

{
ω2
n

s[(s+ σ)2 + ω2
d]

}

= 1− e−σt
(

cos(ωdt) +
σ

ωd
sin(ωdt)

)
(table, #21)
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2nd-Order Step Response

H(s) =
ω2
n

s2 + 2ζωns+ ω2
n

=
ω2
n

(s+ σ)2 + ω2
d

u(t) = 1(t) −→ y(t) = 1− e−σt
(

cos(ωdt) +
σ

ωd
sin(ωdt)

)

where σ = ζωn and ωd = ωn
√

1− ζ2 (damped frequency)

Ζ=0.1

Ζ=0.9

Ζ=1

2 4 6 8 10 12 14
t

0.5

1.0

1.5

yHtL
The parameter ζ is called
the damping ratio

I ζ > 1: system is
overdamped

I ζ < 1: system is
underdamped

I ζ = 0: no damping
(ωd = ωn)
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