Plan of the Lecture

- Review: control, feedback, etc.
- Today's topic: state-space models of systems; linearization

Plan of the Lecture

- Review: control, feedback, etc.
- Today's topic: state-space models of systems; linearization

Goal: a general framework that encompasses all examples of interest. Once we have mastered this framework, we can proceed to analysis and then to design.

Plan of the Lecture

- Review: control, feedback, etc.
- Today's topic: state-space models of systems; linearization

Goal: a general framework that encompasses all examples of interest. Once we have mastered this framework, we can proceed to analysis and then to design.

Reading: FPE, Sections 1.1, 1.2, 2.1-2.4, 7.2, 9.2.1. Chapter 2 has lots of cool examples of system models!!

Notation Reminder

We will be looking at dynamic systems whose evolution in time is described by differential equations with external inputs.

We will not write the time variable t explicitly, so we use

$$
\begin{array}{lll}
x & \text { instead of } & x(t) \\
\dot{x} & \text { instead of } & x^{\prime}(t) \text { or } \frac{\mathrm{d} x}{\mathrm{~d} t} \\
\ddot{x} & \text { instead of } & x^{\prime \prime}(t) \text { or } \frac{\mathrm{d}^{2} x}{\mathrm{~d} t^{2}}
\end{array}
$$

etc.

Example 1: Mass-Spring System

Example 1: Mass-Spring System

Newton's second law (translational motion):

$$
\underbrace{F}_{\text {total force }}=m a
$$

Example 1: Mass-Spring System

Newton's second law (translational motion):

$$
\underbrace{F}_{\text {total force }}=m a=\text { spring force }+ \text { friction }+ \text { external force }
$$

Example 1: Mass-Spring System

Newton's second law (translational motion):
$\underbrace{F}_{\text {total force }}=m a=$ spring force + friction + external force
spring force $=-k x \quad$ (Hooke's law)
friction force $=-\rho \dot{x} \quad$ (Stokes' law — linear drag, only an approximation!!)

Example 1: Mass-Spring System

Newton's second law (translational motion):
$\underbrace{F}_{\text {total force }}=m a=$ spring force + friction + external force
spring force $=-k x \quad$ (Hooke's law)
friction force $=-\rho \dot{x} \quad$ (Stokes' law — linear drag, only an approximation!!)

$$
F=-k x-\rho \dot{x}+u
$$

Example 1: Mass-Spring System

Newton's second law (translational motion):
$\underbrace{F}_{\text {total force }}=m a=$ spring force + friction + external force
spring force $=-k x \quad$ (Hooke's law)
friction force $=-\rho \dot{x} \quad$ (Stokes' law — linear drag, only an approximation!!)

$$
m \ddot{x}=-k x-\rho \dot{x}+u
$$

Example 1: Mass-Spring System

Newton's second law (translational motion):
$\underbrace{F}_{\text {total force }}=m a=$ spring force + friction + external force
spring force $=-k x \quad$ (Hooke's law)
friction force $=-\rho \dot{x} \quad$ (Stokes' law — linear drag, only an approximation!!)

$$
m \ddot{x}=-k x-\rho \dot{x}+u
$$

Move x, \dot{x}, \ddot{x} to the LHS, u to the RHS:

$$
m \ddot{x}+\rho \dot{x}+k x=u
$$

Example 1: Mass-Spring System

Newton's second law (translational motion):
$\underbrace{F}_{\text {total force }}=m a=$ spring force + friction + external force
spring force $=-k x \quad$ (Hooke's law)
friction force $=-\rho \dot{x} \quad$ (Stokes' law — linear drag, only an approximation!!)

$$
m \ddot{x}=-k x-\rho \dot{x}+u
$$

Move x, \dot{x}, \ddot{x} to the LHS, u to the RHS:

$$
\ddot{x}+\frac{\rho}{m} \dot{x}+\frac{k}{m} x=\frac{u}{m}
$$

Example 1: Mass-Spring System

Newton's second law (translational motion):
$\underbrace{F}_{\text {total force }}=m a=$ spring force + friction + external force
spring force $=-k x \quad$ (Hooke's law)
friction force $=-\rho \dot{x} \quad$ (Stokes' law — linear drag, only an approximation!!)

$$
m \ddot{x}=-k x-\rho \dot{x}+u
$$

Move x, \dot{x}, \ddot{x} to the LHS, u to the RHS:

$$
\ddot{x}+\frac{\rho}{m} \dot{x}+\frac{k}{m} x=\frac{u}{m} \quad \text { 2nd-order linear ODE }
$$

Example 1: Mass-Spring System

$$
\ddot{x}+\frac{\rho}{m} \dot{x}+\frac{k}{m} x=\frac{u}{m} \quad \text { 2nd-order linear ODE }
$$

Example 1: Mass-Spring System

Canonical form: convert to a system of 1st-order ODEs

Example 1: Mass-Spring System

$$
\ddot{x}+\frac{\rho}{m} \dot{x}+\frac{k}{m} x=\frac{u}{m} \quad \text { 2nd-order linear ODE }
$$

Canonical form: convert to a system of 1st-order ODEs

$$
\begin{aligned}
\dot{x} & =v \quad \text { (definition of velocity) } \\
\dot{v} & =-\frac{\rho}{m} v-\frac{k}{m} x+\frac{1}{m} u
\end{aligned}
$$

Example 1: Mass-Spring System

State-space model: express in matrix form

$$
\binom{\dot{x}}{\dot{v}}=\left(\begin{array}{cc}
0 & 1 \\
-\frac{k}{m} & -\frac{\rho}{m}
\end{array}\right)\binom{x}{v}+\binom{0}{\frac{1}{m}} u
$$

Example 1: Mass-Spring System

State-space model: express in matrix form

$$
\binom{\dot{x}}{\dot{v}}=\left(\begin{array}{cc}
0 & 1 \\
-\frac{k}{m} & -\frac{\rho}{m}
\end{array}\right)\binom{x}{v}+\binom{0}{\frac{1}{m}} u
$$

Important: start reviewing your linear algebra now!!

- matrix-vector multiplication; eigenvalues and eigenvectors; etc.

General n-Dimensional State-Space Model

$$
\text { state } x=\left(\begin{array}{c}
x_{1} \\
\vdots \\
x_{n}
\end{array}\right) \in \mathbb{R}^{n} \quad \text { input } u=\left(\begin{array}{c}
u_{1} \\
\vdots \\
u_{m}
\end{array}\right) \in \mathbb{R}^{m}
$$

General n-Dimensional State-Space Model

$$
\begin{aligned}
& \text { state } x=\left(\begin{array}{c}
x_{1} \\
\vdots \\
x_{n}
\end{array}\right) \in \mathbb{R}^{n} \quad \text { input } u=\left(\begin{array}{c}
u_{1} \\
\vdots \\
u_{m}
\end{array}\right) \in \mathbb{R}^{m} \\
& \text { (0) (1) (0) (0) (C) }
\end{aligned}
$$

General n-Dimensional State-Space Model

$$
\begin{gathered}
\text { state } x=\left(\begin{array}{c}
x_{1} \\
\vdots \\
x_{n}
\end{array}\right) \in \mathbb{R}^{n} \quad \text { input } u=\left(\begin{array}{c}
u_{1} \\
\vdots \\
u_{m}
\end{array}\right) \in \mathbb{R}^{m} \\
\left(\begin{array}{c}
\dot{x}_{1} \\
\vdots \\
\dot{x}_{n}
\end{array}\right)=\left(\begin{array}{c}
A \\
\\
n \times n \\
\text { matrix }
\end{array}\right)\left(\begin{array}{c}
x_{1} \\
\vdots \\
x_{n}
\end{array}\right)+\left(\begin{array}{c}
B \\
n \times m \\
\text { matrix }
\end{array}\right)\left(\begin{array}{c}
u_{1} \\
\vdots \\
u_{m}
\end{array}\right) \\
\dot{x}=A x+B u
\end{gathered}
$$

Partial Measurements

$$
\text { state } x=\left(\begin{array}{c}
x_{1} \\
\vdots \\
x_{n}
\end{array}\right) \in \mathbb{R}^{n} \quad \text { input } u=\left(\begin{array}{c}
u_{1} \\
\vdots \\
u_{m}
\end{array}\right) \in \mathbb{R}^{m}
$$

Partial Measurements

$$
\begin{aligned}
\text { state } x & =\left(\begin{array}{c}
x_{1} \\
\vdots \\
x_{n}
\end{array}\right) \in \mathbb{R}^{n} \quad \text { input } u=\left(\begin{array}{c}
u_{1} \\
\vdots \\
u_{m}
\end{array}\right) \in \mathbb{R}^{m} \\
\text { output } y & =\left(\begin{array}{c}
y_{1} \\
\vdots \\
y_{p}
\end{array}\right) \in \mathbb{R}^{p} \quad y=C x \quad C-p \times n \text { matrix }
\end{aligned}
$$

Partial Measurements

$$
\begin{gathered}
\text { state } x=\left(\begin{array}{c}
x_{1} \\
\vdots \\
x_{n}
\end{array}\right) \in \mathbb{R}^{n} \quad \text { input } u=\left(\begin{array}{c}
u_{1} \\
\vdots \\
u_{m}
\end{array}\right) \in \mathbb{R}^{m} \\
\text { output } y=\left(\begin{array}{c}
y_{1} \\
\vdots \\
y_{p}
\end{array}\right) \in \mathbb{R}^{p} \quad y=C x \quad C-p \times n \text { matrix } \\
\qquad \begin{array}{c}
\dot{x}=A x+B u \\
y=C x
\end{array}
\end{gathered}
$$

Partial Measurements

$$
\begin{gathered}
\text { state } x=\left(\begin{array}{c}
x_{1} \\
\vdots \\
x_{n}
\end{array}\right) \in \mathbb{R}^{n} \quad \text { input } u=\left(\begin{array}{c}
u_{1} \\
\vdots \\
u_{m}
\end{array}\right) \in \mathbb{R}^{m} \\
\text { output } y=\left(\begin{array}{c}
y_{1} \\
\vdots \\
y_{p}
\end{array}\right) \in \mathbb{R}^{p} \quad y=C x \quad C-p \times n \text { matrix } \\
\qquad \begin{array}{c}
\dot{x}=A x+B u \\
y=C x
\end{array}
\end{gathered}
$$

Example: if we only care about (or can only measure) x_{1}, then

$$
y=x_{1}=\left(\begin{array}{llll}
1 & 0 & \ldots & 0
\end{array}\right)\left(\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
x_{n}
\end{array}\right)
$$

State-Space Models: Bottom Line

$$
\begin{aligned}
& \dot{x}=A x+B u \\
& y=C x
\end{aligned}
$$

State-Space Models: Bottom Line

$$
\begin{aligned}
& \dot{x}=A x+B u \\
& y=C x
\end{aligned}
$$

State-space models are useful and convenient for writing down system models for different types of systems, in a unified manner.

State-Space Models: Bottom Line

$$
\begin{aligned}
& \dot{x}=A x+B u \\
& y=C x
\end{aligned}
$$

State-space models are useful and convenient for writing down system models for different types of systems, in a unified manner.

When working with state-space models, what are states and what are inputs?

State-Space Models: Bottom Line

$$
\begin{aligned}
& \dot{x}=A x+B u \\
& y=C x
\end{aligned}
$$

State-space models are useful and convenient for writing down system models for different types of systems, in a unified manner.

When working with state-space models, what are states and what are inputs?

- match against $\dot{x}=A x+B u$

Example 2: RL Circuit

Example 2: RL Circuit

$$
-V_{S}+V_{R}+V_{L}=0, V_{S}
$$

Kirchhoff's voltage law Ohm's law

Faraday's law

Example 2: RL Circuit

$$
\begin{aligned}
-V_{S}+V_{R}+V_{L} & =0 \\
V_{R} & =R I \\
V_{L} & =L \dot{I}
\end{aligned}
$$

Kirchhoff's voltage law Ohm's law

Faraday's law

$$
\begin{gathered}
-V_{S}+R I+L \dot{I}=0 \\
\dot{I}=-\frac{R}{L} I+\frac{1}{L} V_{S} \quad(\text { 1st-order system })
\end{gathered}
$$

Example 2: RL Circuit

$$
\begin{aligned}
-V_{S}+V_{R}+V_{L} & =0 \\
V_{R} & =R I \\
V_{L} & =L \dot{I}
\end{aligned}
$$

$$
-V_{S}+R I+L \dot{I}=0
$$

$$
\dot{I}=-\frac{R}{L} I+\frac{1}{L} V_{S}
$$

(1st-order system)
I - state, V_{S} - input

Example 2: RL Circuit

$$
\begin{aligned}
-V_{S}+V_{R}+V_{L} & =0 \\
V_{R} & =R I \\
V_{L} & =L \dot{I}
\end{aligned}
$$

Kirchhoff's voltage law
Ohm's law

Faraday's law

$$
-V_{S}+R I+L \dot{I}=0
$$

$$
\dot{I}=-\frac{R}{L} I+\frac{1}{L} V_{S}
$$

(1st-order system)
I - state, V_{S} - input
Q: How should we change the circuit in order to implement a 2nd-order system?

Example 2: RL Circuit

$$
\begin{aligned}
-V_{S}+V_{R}+V_{L} & =0 \\
V_{R} & =R I \\
V_{L} & =L \dot{I}
\end{aligned}
$$

Kirchhoff's voltage law
Ohm's law

Faraday's law

$$
-V_{S}+R I+L \dot{I}=0
$$

$$
\dot{I}=-\frac{R}{L} I+\frac{1}{L} V_{S}
$$

(1st-order system)
I - state, V_{S} - input
Q: How should we change the circuit in order to implement a 2nd-order system? A: Add a capacitor.

Example 3: Pendulum

Example 3: Pendulum

Newton's 2nd law (rotational motion):

Example 3: Pendulum

Newton's 2nd law (rotational motion):

Example 3: Pendulum

Newton's 2nd law (rotational motion):
$\underbrace{T}_{\substack{\text { toral } \\ \text { toraue }}}=\underbrace{J}_{\substack{\text { moment } \\ \text { of mextian acceleratation }}} \underbrace{\alpha}$ $=$ pendulum torque + external torque

Example 3: Pendulum

Newton's 2nd law (rotational motion):

$=$ pendulum torque + external torque

$$
\text { pendulum torque }=\underbrace{-m g \sin \theta}_{\text {force }} \cdot \underbrace{\ell}_{\text {lever arm }}
$$

Example 3: Pendulum

Newton's 2nd law (rotational motion):
$\underbrace{T}_{\substack{\text { torat } \\ \text { toruc }}}=\underbrace{J}_{\substack{\text { momemet } \\ \text { of mertia acceseratation }}} \underbrace{\alpha}$
$=$ pendulum torque + external torque

$$
\text { pendulum torque }=\underbrace{-m g \sin \theta}_{\text {force }} \cdot \underbrace{\ell}_{\text {lever arm }}
$$

moment of inertia $J=m \ell^{2}$

Example 3: Pendulum

Newton's 2nd law (rotational motion):
$\underbrace{T}_{\begin{array}{c}\text { total } \\ \text { torque }\end{array}}=\underbrace{J}_{\begin{array}{c}\text { moment } \\ \text { of inertia }\end{array}} \underbrace{\alpha}_{\begin{array}{c}\text { angular } \\ \text { acceleration }\end{array}}$
$=$ pendulum torque + external torque

$$
\text { pendulum torque }=\underbrace{-m g \sin \theta}_{\text {force }} \cdot \underbrace{\ell}_{\text {lever arm }}
$$

moment of inertia $J=m \ell^{2}$

$$
-m \mathrm{~g} \ell \sin \theta+T_{\mathrm{e}}=m \ell^{2} \ddot{\theta}
$$

Example 3: Pendulum

Newton's 2nd law (rotational motion):
$\underbrace{T}_{\begin{array}{c}\text { total } \\ \text { torque }\end{array}}=\underbrace{J}_{\begin{array}{c}\text { moment } \\ \text { of inertia }\end{array}} \underbrace{\alpha}_{\begin{array}{c}\text { angular } \\ \text { acceleration }\end{array}}$
$=$ pendulum torque + external torque

$$
\text { pendulum torque }=\underbrace{-m g \sin \theta}_{\text {force }} \cdot \underbrace{\ell}_{\text {lever arm }}
$$

moment of inertia $J=m \ell^{2}$

$$
-m \mathrm{~g} \ell \sin \theta+T_{\mathrm{e}}=m \ell^{2} \ddot{\theta}
$$

$$
\ddot{\theta}=-\frac{\mathrm{g}}{\ell} \sin \theta+\frac{1}{m \ell^{2}} T_{\mathrm{e}} \quad \text { (nonlinear equation) }
$$

Example 3: Pendulum

$$
\ddot{\theta}=-\frac{\mathrm{g}}{\ell} \sin \theta+\frac{1}{m \ell^{2}} T_{\mathrm{e}}
$$

(nonlinear equation)

Example 3: Pendulum

$$
\ddot{\theta}=-\frac{\mathrm{g}}{\ell} \sin \theta+\frac{1}{m \ell^{2}} T_{\mathrm{e}} \quad \text { (nonlinear equation) }
$$

For small θ, use the approximation $\sin \theta \approx \theta$

Example 3: Pendulum

$$
\ddot{\theta}=-\frac{\mathrm{g}}{\ell} \sin \theta+\frac{1}{m \ell^{2}} T_{\mathrm{e}}
$$

(nonlinear equation)

For small θ, use the approximation $\sin \theta \approx \theta$

Example 3: Pendulum

$$
\ddot{\theta}=-\frac{\mathrm{g}}{\ell} \sin \theta+\frac{1}{m \ell^{2}} T_{\mathrm{e}}
$$

(nonlinear equation)

For small θ, use the approximation $\sin \theta \approx \theta$

$$
\ddot{\theta}=-\frac{\mathrm{g}}{\ell} \theta+\frac{1}{m \ell^{2}} T_{\mathrm{e}}
$$

State-space form: $\theta_{1}=\theta, \theta_{2}=\dot{\theta}$

$$
\dot{\theta}_{2}=-\frac{\mathrm{g}}{\ell} \theta+\frac{1}{m \ell^{2}} T_{\mathrm{e}}=-\frac{\mathrm{g}}{\ell} \theta_{1}+\frac{1}{m \ell^{2}} T_{\mathrm{e}}
$$

Example 3: Pendulum

$$
\ddot{\theta}=-\frac{\mathrm{g}}{\ell} \sin \theta+\frac{1}{m \ell^{2}} T_{\mathrm{e}}
$$

For small θ, use the approximation $\sin \theta \approx \theta$

$$
\begin{gathered}
\ddot{\theta}=-\frac{\mathrm{g}}{\ell} \theta+\frac{1}{m \ell^{2}} T_{\mathrm{e}} \\
\text { State-space form: } \theta_{1}=\theta, \theta_{2}=\dot{\theta} \\
\dot{\theta}_{2}=-\frac{\mathrm{g}}{\ell} \theta+\frac{1}{m \ell^{2}} T_{\mathrm{e}}=-\frac{\mathrm{g}}{\ell} \theta_{1}+\frac{1}{m \ell^{2}} T_{\mathrm{e}} \\
\binom{\dot{\theta}_{1}}{\dot{\theta}_{2}}=\left(\begin{array}{cc}
0 & 1 \\
-\frac{\mathrm{g}}{\ell} & 0
\end{array}\right)\binom{\theta_{1}}{\theta_{2}}+\binom{0}{\frac{1}{m \ell^{2}}} T_{\mathrm{e}}
\end{gathered}
$$

Linearization

Taylor series expansion:

$$
\begin{aligned}
f(x) & =f\left(x_{0}\right)+f^{\prime}\left(x_{0}\right)\left(x-x_{0}\right)+\frac{1}{2} f^{\prime \prime}\left(x_{0}\right)\left(x-x_{0}\right)^{2}+\ldots \\
& \approx f\left(x_{0}\right)+f^{\prime}\left(x_{0}\right)\left(x-x_{0}\right) \quad \text { linear approximation around } x=x_{0}
\end{aligned}
$$

Linearization

Taylor series expansion:

$$
\begin{aligned}
f(x) & =f\left(x_{0}\right)+f^{\prime}\left(x_{0}\right)\left(x-x_{0}\right)+\frac{1}{2} f^{\prime \prime}\left(x_{0}\right)\left(x-x_{0}\right)^{2}+\ldots \\
& \approx f\left(x_{0}\right)+f^{\prime}\left(x_{0}\right)\left(x-x_{0}\right) \quad \text { linear approximation around } x=x_{0}
\end{aligned}
$$

Control systems are generally nonlinear:
$\dot{x}=f(x, u)$
nonlinear state-space model
$x=\left(\begin{array}{c}x_{1} \\ \vdots \\ x_{n}\end{array}\right) \quad u=\left(\begin{array}{c}u_{1} \\ \vdots \\ u_{m}\end{array}\right) \quad f=\left(\begin{array}{c}f_{1} \\ \vdots \\ f_{n}\end{array}\right)$

Linearization

Taylor series expansion:

$$
\begin{aligned}
f(x) & =f\left(x_{0}\right)+f^{\prime}\left(x_{0}\right)\left(x-x_{0}\right)+\frac{1}{2} f^{\prime \prime}\left(x_{0}\right)\left(x-x_{0}\right)^{2}+\ldots \\
& \approx f\left(x_{0}\right)+f^{\prime}\left(x_{0}\right)\left(x-x_{0}\right) \quad \text { linear approximation around } x=x_{0}
\end{aligned}
$$

Control systems are generally nonlinear:
$\dot{x}=f(x, u)$
nonlinear state-space model
$x=\left(\begin{array}{c}x_{1} \\ \vdots \\ x_{n}\end{array}\right) \quad u=\left(\begin{array}{c}u_{1} \\ \vdots \\ u_{m}\end{array}\right) \quad f=\left(\begin{array}{c}f_{1} \\ \vdots \\ f_{n}\end{array}\right)$
Assume $x=0, u=0$ is an equilibrium point: $f(0,0)=0$
This means that, when the system is at rest and no control is applied, the system does not move.

Linearization

Linear approx. around $(x, u)=(0,0)$ to all components of f :

$$
\dot{x}_{1}=f_{1}(x, u), \quad \ldots, \quad \dot{x}_{n}=f_{n}(x, u)
$$

Linearization

Linear approx. around $(x, u)=(0,0)$ to all components of f :

$$
\dot{x}_{1}=f_{1}(x, u), \quad \ldots, \quad \dot{x}_{n}=f_{n}(x, u)
$$

For each $i=1, \ldots, n$,

$$
\begin{aligned}
f_{i}(x, u)=\underbrace{f_{i}(0,0)}_{=0} & +\frac{\partial f_{i}}{\partial x_{1}}(0,0) x_{1}+\ldots+\frac{\partial f_{i}}{\partial x_{n}}(0,0) x_{n} \\
& +\frac{\partial f_{i}}{\partial u_{1}}(0,0) u_{1}+\ldots+\frac{\partial f_{i}}{\partial u_{m}}(0,0) u_{m}
\end{aligned}
$$

Linearization

Linear approx. around $(x, u)=(0,0)$ to all components of f :

$$
\dot{x}_{1}=f_{1}(x, u), \quad \ldots, \quad \dot{x}_{n}=f_{n}(x, u)
$$

For each $i=1, \ldots, n$,

$$
\begin{aligned}
f_{i}(x, u)=\underbrace{f_{i}(0,0)}_{=0} & +\frac{\partial f_{i}}{\partial x_{1}}(0,0) x_{1}+\ldots+\frac{\partial f_{i}}{\partial x_{n}}(0,0) x_{n} \\
& +\frac{\partial f_{i}}{\partial u_{1}}(0,0) u_{1}+\ldots+\frac{\partial f_{i}}{\partial u_{m}}(0,0) u_{m}
\end{aligned}
$$

Linearized state-space model:

$$
\dot{x}=A x+B u, \quad \text { where } A_{i j}=\left.\frac{\partial f_{i}}{\partial x_{j}}\right|_{\substack{x=0 \\ u=0}}, B_{i k}=\left.\frac{\partial f_{i}}{\partial u_{k}}\right|_{\substack{x=0 \\ u=0}}
$$

Linearization

Linear approx. around $(x, u)=(0,0)$ to all components of f :

$$
\dot{x}_{1}=f_{1}(x, u), \quad \ldots, \quad \dot{x}_{n}=f_{n}(x, u)
$$

For each $i=1, \ldots, n$,

$$
\begin{aligned}
f_{i}(x, u)=\underbrace{f_{i}(0,0)}_{=0} & +\frac{\partial f_{i}}{\partial x_{1}}(0,0) x_{1}+\ldots+\frac{\partial f_{i}}{\partial x_{n}}(0,0) x_{n} \\
& +\frac{\partial f_{i}}{\partial u_{1}}(0,0) u_{1}+\ldots+\frac{\partial f_{i}}{\partial u_{m}}(0,0) u_{m}
\end{aligned}
$$

Linearized state-space model:

$$
\dot{x}=A x+B u, \quad \text { where } A_{i j}=\left.\frac{\partial f_{i}}{\partial x_{j}}\right|_{\substack{x=0 \\ u=0}}, B_{i k}=\left.\frac{\partial f_{i}}{\partial u_{k}}\right|_{\substack{x=0 \\ u=0}}
$$

Important: since we have ignored the higher-order terms, this linear system is only an approximation that holds only for small deviations from equilibrium.

Example 3: Pendulum, Revisited

Original nonlinear state-space model:

$$
\begin{aligned}
& \dot{\theta}_{1}=f_{1}\left(\theta_{1}, \theta_{2}, T_{\mathrm{e}}\right)=\theta_{2} \quad \text { already linear } \\
& \dot{\theta}_{2}=f_{2}\left(\theta_{1}, \theta_{2}, T_{\mathrm{e}}\right)=-\frac{\mathrm{g}}{\ell} \sin \theta_{1}+\frac{1}{m \ell^{2}} T_{\mathrm{e}}
\end{aligned}
$$

Example 3: Pendulum, Revisited

Original nonlinear state-space model:

$$
\begin{aligned}
& \dot{\theta}_{1}=f_{1}\left(\theta_{1}, \theta_{2}, T_{\mathrm{e}}\right)=\theta_{2} \quad-\text { already linear } \\
& \dot{\theta}_{2}=f_{2}\left(\theta_{1}, \theta_{2}, T_{\mathrm{e}}\right)=-\frac{\mathrm{g}}{\ell} \sin \theta_{1}+\frac{1}{m \ell^{2}} T_{\mathrm{e}}
\end{aligned}
$$

Linear approx. of f_{2} around equilibrium $\left(\theta_{1}, \theta_{2}, T_{\mathrm{e}}\right)=(0,0,0)$:

$$
\begin{array}{lll}
\frac{\partial f_{2}}{\partial \theta_{1}}=-\frac{\mathrm{g}}{\ell} \cos \theta_{1} & \frac{\partial f_{2}}{\partial \theta_{2}}=0 & \frac{\partial f_{2}}{\partial T_{\mathrm{e}}}=\frac{1}{m \ell^{2}} \\
\left.\frac{\partial f_{2}}{\partial \theta_{1}}\right|_{0}=-\frac{\mathrm{g}}{\ell} & \left.\frac{\partial f_{2}}{\partial \theta_{2}}\right|_{0}=0 & \left.\frac{\partial f_{2}}{\partial T_{\mathrm{e}}}\right|_{0}=\frac{1}{m \ell^{2}}
\end{array}
$$

Example 3: Pendulum, Revisited

Original nonlinear state-space model:

$$
\begin{aligned}
& \dot{\theta}_{1}=f_{1}\left(\theta_{1}, \theta_{2}, T_{\mathrm{e}}\right)=\theta_{2} \quad \text { - already linear } \\
& \dot{\theta}_{2}=f_{2}\left(\theta_{1}, \theta_{2}, T_{\mathrm{e}}\right)=-\frac{\mathrm{g}}{\ell} \sin \theta_{1}+\frac{1}{m \ell^{2}} T_{\mathrm{e}}
\end{aligned}
$$

Linear approx. of f_{2} around equilibrium $\left(\theta_{1}, \theta_{2}, T_{\mathrm{e}}\right)=(0,0,0)$:

$$
\begin{array}{lll}
\frac{\partial f_{2}}{\partial \theta_{1}}=-\frac{\mathrm{g}}{\ell} \cos \theta_{1} & \frac{\partial f_{2}}{\partial \theta_{2}}=0 & \frac{\partial f_{2}}{\partial T_{\mathrm{e}}}=\frac{1}{m \ell^{2}} \\
\left.\frac{\partial f_{2}}{\partial \theta_{1}}\right|_{0}=-\frac{\mathrm{g}}{\ell} & \left.\frac{\partial f_{2}}{\partial \theta_{2}}\right|_{0}=0 & \left.\frac{\partial f_{2}}{\partial T_{\mathrm{e}}}\right|_{0}=\frac{1}{m \ell^{2}}
\end{array}
$$

Linearized state-space model of the pendulum:

$$
\dot{\theta}_{1}=\theta_{2}
$$

$$
\dot{\theta}_{2}=-\frac{\mathrm{g}}{\ell} \theta_{1}+\frac{1}{m \ell^{2}} T_{\mathrm{e}} \quad \text { valid for small deviations from equ. }
$$

General Linearization Procedure

- Start from nonlinear state-space model

$$
\dot{x}=f(x, u)
$$

General Linearization Procedure

- Start from nonlinear state-space model

$$
\dot{x}=f(x, u)
$$

- Find equilibrium point $\left(x_{0}, u_{0}\right)$ such that $f\left(x_{0}, u_{0}\right)=0$

General Linearization Procedure

- Start from nonlinear state-space model

$$
\dot{x}=f(x, u)
$$

- Find equilibrium point $\left(x_{0}, u_{0}\right)$ such that $f\left(x_{0}, u_{0}\right)=0$ Note: different systems may have different equilibria, not necessarily $(0,0)$, so we need to shift variables:

$$
\begin{aligned}
& \underline{x}=x-x_{0} \quad \underline{u}=u-u_{0} \\
& \underline{f}(\underline{x}, \underline{u})=f\left(\underline{x}+x_{0}, \underline{u}+u_{0}\right)=f(x, u)
\end{aligned}
$$

General Linearization Procedure

- Start from nonlinear state-space model

$$
\dot{x}=f(x, u)
$$

- Find equilibrium point $\left(x_{0}, u_{0}\right)$ such that $f\left(x_{0}, u_{0}\right)=0$ Note: different systems may have different equilibria, not necessarily $(0,0)$, so we need to shift variables:

$$
\begin{aligned}
& \underline{x}=x-x_{0} \quad \underline{u}=u-u_{0} \\
& \underline{f}(\underline{x}, \underline{u})=f\left(\underline{x}+x_{0}, \underline{u}+u_{0}\right)=f(x, u)
\end{aligned}
$$

Note that the transformation is invertible:

$$
x=\underline{x}+x_{0}, \quad u=\underline{u}+u_{0}
$$

General Linearization Procedure

General Linearization Procedure

- Pass to shifted variables $\underline{x}=x-x_{0}, \underline{u}=u-u_{0}$

$$
\begin{aligned}
\underline{\dot{x}} & =\dot{x} \quad\left(x_{0} \text { does not depend on } t\right) \\
& =f(x, u) \\
& =\underline{f}(\underline{x}, \underline{u})
\end{aligned}
$$

- equivalent to original system

General Linearization Procedure

- Pass to shifted variables $\underline{x}=x-x_{0}, \underline{u}=u-u_{0}$

$$
\begin{aligned}
\underline{\dot{x}} & =\dot{x} \quad\left(x_{0} \text { does not depend on } t\right) \\
& =f(x, u) \\
& =\underline{f}(\underline{x}, \underline{u})
\end{aligned}
$$

- equivalent to original system
- The transformed system is in equilibrium at $(0,0)$:

$$
\underline{f}(0,0)=f\left(x_{0}, u_{0}\right)=0
$$

General Linearization Procedure

- Pass to shifted variables $\underline{x}=x-x_{0}, \underline{u}=u-u_{0}$

$$
\begin{aligned}
\underline{\dot{x}} & =\dot{x} \quad\left(x_{0} \text { does not depend on } t\right) \\
& =f(x, u) \\
& =\underline{f}(\underline{x}, \underline{u})
\end{aligned}
$$

- equivalent to original system
- The transformed system is in equilibrium at $(0,0)$:

$$
\underline{f}(0,0)=f\left(x_{0}, u_{0}\right)=0
$$

- Now linearize:

$$
\underline{\dot{x}}=A \underline{x}+B \underline{u}, \quad \text { where } A_{i j}=\left.\frac{\partial f_{i}}{\partial x_{j}}\right|_{\substack{x=x_{0} \\ u=u_{0}}}, B_{i k}=\left.\frac{\partial f_{i}}{\partial u_{k}}\right|_{\substack{x=x_{0} \\ u=u_{0}}}
$$

General Linearization Procedure

- Why do we require that $f\left(x_{0}, u_{0}\right)=0$ in equilibrium?

General Linearization Procedure

- Why do we require that $f\left(x_{0}, u_{0}\right)=0$ in equilibrium?
- This requires some thought. Indeed, we may talk about a linear approximation of any smooth function f at any point x_{0} :
$f(x) \approx f\left(x_{0}\right)+f^{\prime}\left(x_{0}\right)\left(x-x_{0}\right) \quad-f\left(x_{0}\right)$ does not have to be 0

General Linearization Procedure

- Why do we require that $f\left(x_{0}, u_{0}\right)=0$ in equilibrium?
- This requires some thought. Indeed, we may talk about a linear approximation of any smooth function f at any point x_{0} :
$f(x) \approx f\left(x_{0}\right)+f^{\prime}\left(x_{0}\right)\left(x-x_{0}\right) \quad-f\left(x_{0}\right)$ does not have to be 0
- The key is that we want to approximate a given nonlinear system $\dot{x}=f(x, u)$ by a linear system $\dot{x}=A x+B u$ (may have to shift coordinates: $\left.x \mapsto x-x_{0}, u \mapsto u-u_{0}\right)$

General Linearization Procedure

- Why do we require that $f\left(x_{0}, u_{0}\right)=0$ in equilibrium?
- This requires some thought. Indeed, we may talk about a linear approximation of any smooth function f at any point x_{0} :
$f(x) \approx f\left(x_{0}\right)+f^{\prime}\left(x_{0}\right)\left(x-x_{0}\right) \quad-f\left(x_{0}\right)$ does not have to be 0
- The key is that we want to approximate a given nonlinear system $\dot{x}=f(x, u)$ by a linear system $\dot{x}=A x+B u$ (may have to shift coordinates: $\left.x \mapsto x-x_{0}, u \mapsto u-u_{0}\right)$

Any linear system must have an equilibrium point at $(x, u)=(0,0)$:

$$
f(x, u)=A x+B u \quad f(0,0)=A 0+B 0=0
$$

