
Plan of the Lecture

I Review: control, feedback, etc.

I Today’s topic: state-space models of systems; linearization

Goal: a general framework that encompasses all examples of
interest. Once we have mastered this framework, we can
proceed to analysis and then to design.

Reading: FPE, Sections 1.1, 1.2, 2.1–2.4, 7.2, 9.2.1.
Chapter 2 has lots of cool examples of system models!!



Plan of the Lecture

I Review: control, feedback, etc.

I Today’s topic: state-space models of systems; linearization

Goal: a general framework that encompasses all examples of
interest. Once we have mastered this framework, we can
proceed to analysis and then to design.

Reading: FPE, Sections 1.1, 1.2, 2.1–2.4, 7.2, 9.2.1.
Chapter 2 has lots of cool examples of system models!!



Plan of the Lecture

I Review: control, feedback, etc.

I Today’s topic: state-space models of systems; linearization

Goal: a general framework that encompasses all examples of
interest. Once we have mastered this framework, we can
proceed to analysis and then to design.

Reading: FPE, Sections 1.1, 1.2, 2.1–2.4, 7.2, 9.2.1.
Chapter 2 has lots of cool examples of system models!!



Notation Reminder

We will be looking at dynamic systems whose evolution in
time is described by differential equations with external
inputs.

We will not write the time variable t explicitly, so we use

x instead of x(t)

ẋ instead of x′(t) or
dx

dt

ẍ instead of x′′(t) or
d2x

dt2

etc.



Example 1: Mass-Spring System

um

x

Newton’s second law (translational motion):

F︸︷︷︸
total force

= ma = spring force + friction + external force

spring force = −kx (Hooke’s law)

friction force = −ρẋ (Stokes’ law — linear drag, only an approximation!!)

F = −kx− ρẋ+ u

Move x, ẋ, ẍ to the LHS, u to the RHS:

mẍ+ ρẋ+ kx = u

2nd-order linear ODE
k

m



Example 1: Mass-Spring System

um

x

Newton’s second law (translational motion):

F︸︷︷︸
total force

= ma

= spring force + friction + external force

spring force = −kx (Hooke’s law)

friction force = −ρẋ (Stokes’ law — linear drag, only an approximation!!)

F = −kx− ρẋ+ u

Move x, ẋ, ẍ to the LHS, u to the RHS:

mẍ+ ρẋ+ kx = u

2nd-order linear ODE
k

m



Example 1: Mass-Spring System

um

x

Newton’s second law (translational motion):

F︸︷︷︸
total force

= ma = spring force + friction + external force

spring force = −kx (Hooke’s law)

friction force = −ρẋ (Stokes’ law — linear drag, only an approximation!!)

F = −kx− ρẋ+ u

Move x, ẋ, ẍ to the LHS, u to the RHS:

mẍ+ ρẋ+ kx = u

2nd-order linear ODE
k

m



Example 1: Mass-Spring System

um

x

Newton’s second law (translational motion):

F︸︷︷︸
total force

= ma = spring force + friction + external force

spring force = −kx (Hooke’s law)

friction force = −ρẋ (Stokes’ law — linear drag, only an approximation!!)

F = −kx− ρẋ+ u

Move x, ẋ, ẍ to the LHS, u to the RHS:

mẍ+ ρẋ+ kx = u

2nd-order linear ODE
k

m



Example 1: Mass-Spring System

um

x

Newton’s second law (translational motion):

F︸︷︷︸
total force

= ma = spring force + friction + external force

spring force = −kx (Hooke’s law)

friction force = −ρẋ (Stokes’ law — linear drag, only an approximation!!)

F = −kx− ρẋ+ u

Move x, ẋ, ẍ to the LHS, u to the RHS:

mẍ+ ρẋ+ kx = u

2nd-order linear ODE
k

m



Example 1: Mass-Spring System

um

x

Newton’s second law (translational motion):

F︸︷︷︸
total force

= ma = spring force + friction + external force

spring force = −kx (Hooke’s law)

friction force = −ρẋ (Stokes’ law — linear drag, only an approximation!!)

mẍ = −kx− ρẋ+ u

Move x, ẋ, ẍ to the LHS, u to the RHS:

mẍ+ ρẋ+ kx = u

2nd-order linear ODE
k

m



Example 1: Mass-Spring System

um

x

Newton’s second law (translational motion):

F︸︷︷︸
total force

= ma = spring force + friction + external force

spring force = −kx (Hooke’s law)

friction force = −ρẋ (Stokes’ law — linear drag, only an approximation!!)

mẍ = −kx− ρẋ+ u

Move x, ẋ, ẍ to the LHS, u to the RHS:

mẍ+ ρẋ+ kx = u

2nd-order linear ODE
k

m



Example 1: Mass-Spring System

um

x

Newton’s second law (translational motion):

F︸︷︷︸
total force

= ma = spring force + friction + external force

spring force = −kx (Hooke’s law)

friction force = −ρẋ (Stokes’ law — linear drag, only an approximation!!)

mẍ = −kx− ρẋ+ u

Move x, ẋ, ẍ to the LHS, u to the RHS:

ẍ+
ρ

m
ẋ+

k

m
x =

u

m

2nd-order linear ODE
k

m



Example 1: Mass-Spring System

um

x

Newton’s second law (translational motion):

F︸︷︷︸
total force

= ma = spring force + friction + external force

spring force = −kx (Hooke’s law)

friction force = −ρẋ (Stokes’ law — linear drag, only an approximation!!)

mẍ = −kx− ρẋ+ u

Move x, ẋ, ẍ to the LHS, u to the RHS:

ẍ+
ρ

m
ẋ+

k

m
x =

u

m
2nd-order linear ODE

k

m



Example 1: Mass-Spring System

um

x

ẍ+
ρ

m
ẋ+

k

m
x =

u

m
2nd-order linear ODE

Canonical form: convert to a system of 1st-order ODEs

ẋ = v (definition of velocity)

v̇ = − ρ
m
v − k

m
x+

1

m
u



Example 1: Mass-Spring System

um

x

ẍ+
ρ

m
ẋ+

k

m
x =

u

m
2nd-order linear ODE

Canonical form: convert to a system of 1st-order ODEs

ẋ = v (definition of velocity)

v̇ = − ρ
m
v − k

m
x+

1

m
u



Example 1: Mass-Spring System

um

x

ẍ+
ρ

m
ẋ+

k

m
x =

u

m
2nd-order linear ODE

Canonical form: convert to a system of 1st-order ODEs

ẋ = v (definition of velocity)

v̇ = − ρ
m
v − k

m
x+

1

m
u



Example 1: Mass-Spring System

um

x

State-space model: express in matrix form

(
ẋ

v̇

)
=

(
0 1
− k
m − ρ

m

)(
x

v

)
+

(
0
1
m

)
u

Important: start reviewing your linear algebra now!!

I matrix-vector multiplication; eigenvalues and eigenvectors; etc.



Example 1: Mass-Spring System

um

x

State-space model: express in matrix form

(
ẋ

v̇

)
=

(
0 1
− k
m − ρ

m

)(
x

v

)
+

(
0
1
m

)
u

Important: start reviewing your linear algebra now!!

I matrix-vector multiplication; eigenvalues and eigenvectors; etc.



General n-Dimensional State-Space Model

state x =

x1...
xn

 ∈ Rn input u =

u1
...
um

 ∈ Rm

ẋ1
...
ẋn

 =

 A

n× n
matrix

x1
...
xn

+

 B

n×m
matrix

u1
...
um



ẋ = Ax +Bu



General n-Dimensional State-Space Model

state x =

x1...
xn

 ∈ Rn input u =

u1
...
um

 ∈ Rm

ẋ1
...
ẋn

 =

 A

n× n
matrix

x1
...
xn

+

 B

n×m
matrix

u1
...
um



ẋ = Ax +Bu



General n-Dimensional State-Space Model

state x =

x1...
xn

 ∈ Rn input u =

u1
...
um

 ∈ Rm

ẋ1
...
ẋn

 =

 A

n× n
matrix

x1
...
xn

+

 B

n×m
matrix

u1
...
um



ẋ = Ax +Bu



Partial Measurements

state x =

x1...
xn

 ∈ Rn input u =

u1
...
um

 ∈ Rm

output y =

y1...
yp

 ∈ Rp y = Cx C– p× n matrix

ẋ = Ax+Bu

y = Cx

Example: if we only care about (or can only measure) x1, then

y = x1 =
(
1 0 . . . 0

)

x1
x2
...
xn





Partial Measurements

state x =

x1...
xn

 ∈ Rn input u =

u1
...
um

 ∈ Rm

output y =

y1...
yp

 ∈ Rp y = Cx C– p× n matrix

ẋ = Ax+Bu

y = Cx

Example: if we only care about (or can only measure) x1, then

y = x1 =
(
1 0 . . . 0

)

x1
x2
...
xn





Partial Measurements

state x =

x1...
xn

 ∈ Rn input u =

u1
...
um

 ∈ Rm

output y =

y1...
yp

 ∈ Rp y = Cx C– p× n matrix

ẋ = Ax+Bu

y = Cx

Example: if we only care about (or can only measure) x1, then

y = x1 =
(
1 0 . . . 0

)

x1
x2
...
xn





Partial Measurements

state x =

x1...
xn

 ∈ Rn input u =

u1
...
um

 ∈ Rm

output y =

y1...
yp

 ∈ Rp y = Cx C– p× n matrix

ẋ = Ax+Bu

y = Cx

Example: if we only care about (or can only measure) x1, then

y = x1 =
(
1 0 . . . 0

)

x1
x2
...
xn





State-Space Models: Bottom Line

ẋ = Ax +Bu

y = Cx

State-space models are useful and convenient for
writing down system models for different types
of systems, in a unified manner.

When working with state-space models, what are
states and what are inputs?

— match against ẋ = Ax+Bu



State-Space Models: Bottom Line

ẋ = Ax +Bu

y = Cx

State-space models are useful and convenient for
writing down system models for different types
of systems, in a unified manner.

When working with state-space models, what are
states and what are inputs?

— match against ẋ = Ax+Bu



State-Space Models: Bottom Line

ẋ = Ax +Bu

y = Cx

State-space models are useful and convenient for
writing down system models for different types
of systems, in a unified manner.

When working with state-space models, what are
states and what are inputs?

— match against ẋ = Ax+Bu



State-Space Models: Bottom Line

ẋ = Ax +Bu

y = Cx

State-space models are useful and convenient for
writing down system models for different types
of systems, in a unified manner.

When working with state-space models, what are
states and what are inputs?

— match against ẋ = Ax+Bu



Example 2: RL Circuit

IVS

VR

VL

+ �
+

�

+

�

−VS + VR + VL = 0 Kirchhoff’s voltage law

VR = RI Ohm’s law

VL = Lİ Faraday’s law

−VS +RI + Lİ = 0

İ = −R
L
I +

1

L
VS (1st-order system)

I – state, VS – input

Q: How should we change the circuit in order to implement a
2nd-order system? A: Add a capacitor.



Example 2: RL Circuit

IVS

VR

VL

+ �
+

�

+

�
−VS + VR + VL = 0 Kirchhoff’s voltage law

VR = RI Ohm’s law

VL = Lİ Faraday’s law

−VS +RI + Lİ = 0

İ = −R
L
I +

1

L
VS (1st-order system)

I – state, VS – input

Q: How should we change the circuit in order to implement a
2nd-order system? A: Add a capacitor.



Example 2: RL Circuit

IVS

VR

VL

+ �
+

�

+

�
−VS + VR + VL = 0 Kirchhoff’s voltage law

VR = RI Ohm’s law

VL = Lİ Faraday’s law

−VS +RI + Lİ = 0

İ = −R
L
I +

1

L
VS (1st-order system)

I – state, VS – input

Q: How should we change the circuit in order to implement a
2nd-order system? A: Add a capacitor.



Example 2: RL Circuit

IVS

VR

VL

+ �
+

�

+

�
−VS + VR + VL = 0 Kirchhoff’s voltage law

VR = RI Ohm’s law

VL = Lİ Faraday’s law

−VS +RI + Lİ = 0

İ = −R
L
I +

1

L
VS (1st-order system)

I – state, VS – input

Q: How should we change the circuit in order to implement a
2nd-order system? A: Add a capacitor.



Example 2: RL Circuit

IVS

VR

VL

+ �
+

�

+

�
−VS + VR + VL = 0 Kirchhoff’s voltage law

VR = RI Ohm’s law

VL = Lİ Faraday’s law

−VS +RI + Lİ = 0

İ = −R
L
I +

1

L
VS (1st-order system)

I – state, VS – input

Q: How should we change the circuit in order to implement a
2nd-order system?

A: Add a capacitor.



Example 2: RL Circuit

IVS

VR

VL

+ �
+

�

+

�
−VS + VR + VL = 0 Kirchhoff’s voltage law

VR = RI Ohm’s law

VL = Lİ Faraday’s law

−VS +RI + Lİ = 0

İ = −R
L
I +

1

L
VS (1st-order system)

I – state, VS – input

Q: How should we change the circuit in order to implement a
2nd-order system? A: Add a capacitor.



Example 3: Pendulum

`

mg

mg sin ✓

✓

✓
Te

external

torque

Newton’s 2nd law (rotational motion):

T︸︷︷︸
total
torque

= J︸︷︷︸
moment
of inertia

α︸︷︷︸
angular

acceleration

= pendulum torque + external torque

pendulum torque = −mg sin θ︸ ︷︷ ︸
force

· `︸︷︷︸
lever arm

moment of inertia J = m`2

−mg` sin θ + Te = m`2θ̈

θ̈ = −g

`
sin θ +

1

m`2
Te (nonlinear equation)



Example 3: Pendulum

`

mg

mg sin ✓

✓

✓
Te

external

torque

Newton’s 2nd law (rotational motion):

T︸︷︷︸
total
torque

= J︸︷︷︸
moment
of inertia

α︸︷︷︸
angular

acceleration

= pendulum torque + external torque

pendulum torque = −mg sin θ︸ ︷︷ ︸
force

· `︸︷︷︸
lever arm

moment of inertia J = m`2

−mg` sin θ + Te = m`2θ̈

θ̈ = −g

`
sin θ +

1

m`2
Te (nonlinear equation)



Example 3: Pendulum

`

mg

mg sin ✓

✓

✓
Te

external

torque

Newton’s 2nd law (rotational motion):

T︸︷︷︸
total
torque

= J︸︷︷︸
moment
of inertia

α︸︷︷︸
angular

acceleration

= pendulum torque + external torque

pendulum torque = −mg sin θ︸ ︷︷ ︸
force

· `︸︷︷︸
lever arm

moment of inertia J = m`2

−mg` sin θ + Te = m`2θ̈

θ̈ = −g

`
sin θ +

1

m`2
Te (nonlinear equation)



Example 3: Pendulum

`

mg

mg sin ✓

✓

✓
Te

external

torque

Newton’s 2nd law (rotational motion):

T︸︷︷︸
total
torque

= J︸︷︷︸
moment
of inertia

α︸︷︷︸
angular

acceleration

= pendulum torque + external torque

pendulum torque = −mg sin θ︸ ︷︷ ︸
force

· `︸︷︷︸
lever arm

moment of inertia J = m`2

−mg` sin θ + Te = m`2θ̈

θ̈ = −g

`
sin θ +

1

m`2
Te (nonlinear equation)



Example 3: Pendulum

`

mg

mg sin ✓

✓

✓
Te

external

torque

Newton’s 2nd law (rotational motion):

T︸︷︷︸
total
torque

= J︸︷︷︸
moment
of inertia

α︸︷︷︸
angular

acceleration

= pendulum torque + external torque

pendulum torque = −mg sin θ︸ ︷︷ ︸
force

· `︸︷︷︸
lever arm

moment of inertia J = m`2

−mg` sin θ + Te = m`2θ̈

θ̈ = −g

`
sin θ +

1

m`2
Te (nonlinear equation)



Example 3: Pendulum

`

mg

mg sin ✓

✓

✓
Te

external

torque

Newton’s 2nd law (rotational motion):

T︸︷︷︸
total
torque

= J︸︷︷︸
moment
of inertia

α︸︷︷︸
angular

acceleration

= pendulum torque + external torque

pendulum torque = −mg sin θ︸ ︷︷ ︸
force

· `︸︷︷︸
lever arm

moment of inertia J = m`2

−mg` sin θ + Te = m`2θ̈

θ̈ = −g

`
sin θ +

1

m`2
Te (nonlinear equation)



Example 3: Pendulum

`

mg

mg sin ✓

✓

✓
Te

external

torque

Newton’s 2nd law (rotational motion):

T︸︷︷︸
total
torque

= J︸︷︷︸
moment
of inertia

α︸︷︷︸
angular

acceleration

= pendulum torque + external torque

pendulum torque = −mg sin θ︸ ︷︷ ︸
force

· `︸︷︷︸
lever arm

moment of inertia J = m`2

−mg` sin θ + Te = m`2θ̈

θ̈ = −g

`
sin θ +

1

m`2
Te (nonlinear equation)



Example 3: Pendulum

`

mg

mg sin ✓

✓

✓
Te

external

torque

Newton’s 2nd law (rotational motion):

T︸︷︷︸
total
torque

= J︸︷︷︸
moment
of inertia

α︸︷︷︸
angular

acceleration

= pendulum torque + external torque

pendulum torque = −mg sin θ︸ ︷︷ ︸
force

· `︸︷︷︸
lever arm

moment of inertia J = m`2

−mg` sin θ + Te = m`2θ̈

θ̈ = −g

`
sin θ +

1

m`2
Te (nonlinear equation)



Example 3: Pendulum

θ̈ = −g

`
sin θ +

1

m`2
Te (nonlinear equation)

For small θ, use the approximation sin θ ≈ θ

sinHΘL
Θ

-3 -2 -1 1 2 3

-3

-2

-1

1

2

3

θ̈ = −g

`
θ +

1

m`2
Te

State-space form: θ1 = θ, θ2 = θ̇

θ̇2 = −g

`
θ +

1

m`2
Te = −g

`
θ1 +

1

m`2
Te

(
θ̇1

θ̇2

)
=

(
0 1
−g
` 0

)(
θ1

θ2

)
+

(
0
1
m`2

)
Te



Example 3: Pendulum

θ̈ = −g

`
sin θ +

1

m`2
Te (nonlinear equation)

For small θ, use the approximation sin θ ≈ θ

sinHΘL
Θ

-3 -2 -1 1 2 3

-3

-2

-1

1

2

3

θ̈ = −g

`
θ +

1

m`2
Te

State-space form: θ1 = θ, θ2 = θ̇

θ̇2 = −g

`
θ +

1

m`2
Te = −g

`
θ1 +

1

m`2
Te

(
θ̇1

θ̇2

)
=

(
0 1
−g
` 0

)(
θ1

θ2

)
+

(
0
1
m`2

)
Te



Example 3: Pendulum

θ̈ = −g

`
sin θ +

1

m`2
Te (nonlinear equation)

For small θ, use the approximation sin θ ≈ θ

sinHΘL
Θ

-3 -2 -1 1 2 3

-3

-2

-1

1

2

3

θ̈ = −g

`
θ +

1

m`2
Te

State-space form: θ1 = θ, θ2 = θ̇

θ̇2 = −g

`
θ +

1

m`2
Te = −g

`
θ1 +

1

m`2
Te

(
θ̇1

θ̇2

)
=

(
0 1
−g
` 0

)(
θ1

θ2

)
+

(
0
1
m`2

)
Te



Example 3: Pendulum

θ̈ = −g

`
sin θ +

1

m`2
Te (nonlinear equation)

For small θ, use the approximation sin θ ≈ θ

sinHΘL
Θ

-3 -2 -1 1 2 3

-3

-2

-1

1

2

3

θ̈ = −g

`
θ +

1

m`2
Te

State-space form: θ1 = θ, θ2 = θ̇

θ̇2 = −g

`
θ +

1

m`2
Te = −g

`
θ1 +

1

m`2
Te

(
θ̇1

θ̇2

)
=

(
0 1
−g
` 0

)(
θ1

θ2

)
+

(
0
1
m`2

)
Te



Example 3: Pendulum

θ̈ = −g

`
sin θ +

1

m`2
Te (nonlinear equation)

For small θ, use the approximation sin θ ≈ θ

sinHΘL
Θ

-3 -2 -1 1 2 3

-3

-2

-1

1

2

3

θ̈ = −g

`
θ +

1

m`2
Te

State-space form: θ1 = θ, θ2 = θ̇

θ̇2 = −g

`
θ +

1

m`2
Te = −g

`
θ1 +

1

m`2
Te

(
θ̇1

θ̇2

)
=

(
0 1
−g
` 0

)(
θ1

θ2

)
+

(
0
1
m`2

)
Te



Linearization

Taylor series expansion:

f(x) = f(x0) + f ′(x0)(x− x0) +
1

2
f ′′(x0)(x− x0)2 + . . .

≈ f(x0) + f ′(x0)(x− x0) linear approximation around x = x0

Control systems are generally nonlinear :

ẋ = f(x, u) nonlinear state-space model

x =

x1...
xn

 u =

u1
...
um

 f =

f1...
fn


Assume x = 0, u = 0 is an equilibrium point: f(0, 0) = 0

This means that, when the system is at rest and no control is
applied, the system does not move.



Linearization

Taylor series expansion:

f(x) = f(x0) + f ′(x0)(x− x0) +
1

2
f ′′(x0)(x− x0)2 + . . .

≈ f(x0) + f ′(x0)(x− x0) linear approximation around x = x0

Control systems are generally nonlinear :

ẋ = f(x, u) nonlinear state-space model

x =

x1...
xn

 u =

u1
...
um

 f =

f1...
fn



Assume x = 0, u = 0 is an equilibrium point: f(0, 0) = 0

This means that, when the system is at rest and no control is
applied, the system does not move.



Linearization

Taylor series expansion:

f(x) = f(x0) + f ′(x0)(x− x0) +
1

2
f ′′(x0)(x− x0)2 + . . .

≈ f(x0) + f ′(x0)(x− x0) linear approximation around x = x0

Control systems are generally nonlinear :

ẋ = f(x, u) nonlinear state-space model

x =

x1...
xn

 u =

u1
...
um

 f =

f1...
fn


Assume x = 0, u = 0 is an equilibrium point: f(0, 0) = 0

This means that, when the system is at rest and no control is
applied, the system does not move.



Linearization
Linear approx. around (x, u) = (0, 0) to all components of f :

ẋ1 = f1(x, u), . . . , ẋn = fn(x, u)

For each i = 1, . . . , n,

fi(x, u) = fi(0, 0)︸ ︷︷ ︸
=0

+
∂fi
∂x1

(0, 0)x1 + . . .+
∂fi
∂xn

(0, 0)xn

+
∂fi
∂u1

(0, 0)u1 + . . .+
∂fi
∂um

(0, 0)um

Linearized state-space model:

ẋ = Ax+Bu, where Aij =
∂fi
∂xj

∣∣∣∣∣
x=0
u=0

, Bik =
∂fi
∂uk

∣∣∣∣∣
x=0
u=0

Important: since we have ignored the higher-order terms, this
linear system is only an approximation that holds only for small
deviations from equilibrium.



Linearization
Linear approx. around (x, u) = (0, 0) to all components of f :

ẋ1 = f1(x, u), . . . , ẋn = fn(x, u)

For each i = 1, . . . , n,

fi(x, u) = fi(0, 0)︸ ︷︷ ︸
=0

+
∂fi
∂x1

(0, 0)x1 + . . .+
∂fi
∂xn

(0, 0)xn

+
∂fi
∂u1

(0, 0)u1 + . . .+
∂fi
∂um

(0, 0)um

Linearized state-space model:

ẋ = Ax+Bu, where Aij =
∂fi
∂xj

∣∣∣∣∣
x=0
u=0

, Bik =
∂fi
∂uk

∣∣∣∣∣
x=0
u=0

Important: since we have ignored the higher-order terms, this
linear system is only an approximation that holds only for small
deviations from equilibrium.



Linearization
Linear approx. around (x, u) = (0, 0) to all components of f :

ẋ1 = f1(x, u), . . . , ẋn = fn(x, u)

For each i = 1, . . . , n,

fi(x, u) = fi(0, 0)︸ ︷︷ ︸
=0

+
∂fi
∂x1

(0, 0)x1 + . . .+
∂fi
∂xn

(0, 0)xn

+
∂fi
∂u1

(0, 0)u1 + . . .+
∂fi
∂um

(0, 0)um

Linearized state-space model:

ẋ = Ax+Bu, where Aij =
∂fi
∂xj

∣∣∣∣∣
x=0
u=0

, Bik =
∂fi
∂uk

∣∣∣∣∣
x=0
u=0

Important: since we have ignored the higher-order terms, this
linear system is only an approximation that holds only for small
deviations from equilibrium.



Linearization
Linear approx. around (x, u) = (0, 0) to all components of f :

ẋ1 = f1(x, u), . . . , ẋn = fn(x, u)

For each i = 1, . . . , n,

fi(x, u) = fi(0, 0)︸ ︷︷ ︸
=0

+
∂fi
∂x1

(0, 0)x1 + . . .+
∂fi
∂xn

(0, 0)xn

+
∂fi
∂u1

(0, 0)u1 + . . .+
∂fi
∂um

(0, 0)um

Linearized state-space model:

ẋ = Ax+Bu, where Aij =
∂fi
∂xj

∣∣∣∣∣
x=0
u=0

, Bik =
∂fi
∂uk

∣∣∣∣∣
x=0
u=0

Important: since we have ignored the higher-order terms, this
linear system is only an approximation that holds only for small
deviations from equilibrium.



Example 3: Pendulum, Revisited
Original nonlinear state-space model:

θ̇1 = f1(θ1, θ2, Te) = θ2 — already linear

θ̇2 = f2(θ1, θ2, Te) = −g

`
sin θ1 +

1

m`2
Te

Linear approx. of f2 around equilibrium (θ1, θ2, Te) = (0, 0, 0):

∂f2
∂θ1

= −g

`
cos θ1

∂f2
∂θ2

= 0
∂f2
∂Te

=
1

m`2

∂f2
∂θ1

∣∣∣∣∣
0

= −g

`

∂f2
∂θ2

∣∣∣∣∣
0

= 0
∂f2
∂Te

∣∣∣∣∣
0

=
1

m`2

Linearized state-space model of the pendulum:

θ̇1 = θ2

θ̇2 = −g

`
θ1 +

1

m`2
Te valid for small deviations from equ.



Example 3: Pendulum, Revisited
Original nonlinear state-space model:

θ̇1 = f1(θ1, θ2, Te) = θ2 — already linear

θ̇2 = f2(θ1, θ2, Te) = −g

`
sin θ1 +

1

m`2
Te

Linear approx. of f2 around equilibrium (θ1, θ2, Te) = (0, 0, 0):

∂f2
∂θ1

= −g

`
cos θ1

∂f2
∂θ2

= 0
∂f2
∂Te

=
1

m`2

∂f2
∂θ1

∣∣∣∣∣
0

= −g

`

∂f2
∂θ2

∣∣∣∣∣
0

= 0
∂f2
∂Te

∣∣∣∣∣
0

=
1

m`2

Linearized state-space model of the pendulum:

θ̇1 = θ2

θ̇2 = −g

`
θ1 +

1

m`2
Te valid for small deviations from equ.



Example 3: Pendulum, Revisited
Original nonlinear state-space model:

θ̇1 = f1(θ1, θ2, Te) = θ2 — already linear

θ̇2 = f2(θ1, θ2, Te) = −g

`
sin θ1 +

1

m`2
Te

Linear approx. of f2 around equilibrium (θ1, θ2, Te) = (0, 0, 0):

∂f2
∂θ1

= −g

`
cos θ1

∂f2
∂θ2

= 0
∂f2
∂Te

=
1

m`2

∂f2
∂θ1

∣∣∣∣∣
0

= −g

`

∂f2
∂θ2

∣∣∣∣∣
0

= 0
∂f2
∂Te

∣∣∣∣∣
0

=
1

m`2

Linearized state-space model of the pendulum:

θ̇1 = θ2

θ̇2 = −g

`
θ1 +

1

m`2
Te valid for small deviations from equ.



General Linearization Procedure

I Start from nonlinear state-space model

ẋ = f(x, u)

I Find equilibrium point (x0, u0) such that f(x0, u0) = 0

Note: different systems may have different equilibria,
not necessarily (0, 0), so we need to shift variables:

x = x− x0 u = u− u0
f(x, u) = f(x+ x0, u+ u0) = f(x, u)

Note that the transformation is invertible:

x = x+ x0, u = u+ u0



General Linearization Procedure

I Start from nonlinear state-space model

ẋ = f(x, u)

I Find equilibrium point (x0, u0) such that f(x0, u0) = 0

Note: different systems may have different equilibria,
not necessarily (0, 0), so we need to shift variables:

x = x− x0 u = u− u0
f(x, u) = f(x+ x0, u+ u0) = f(x, u)

Note that the transformation is invertible:

x = x+ x0, u = u+ u0



General Linearization Procedure

I Start from nonlinear state-space model

ẋ = f(x, u)

I Find equilibrium point (x0, u0) such that f(x0, u0) = 0

Note: different systems may have different equilibria,
not necessarily (0, 0), so we need to shift variables:

x = x− x0 u = u− u0
f(x, u) = f(x+ x0, u+ u0) = f(x, u)

Note that the transformation is invertible:

x = x+ x0, u = u+ u0



General Linearization Procedure

I Start from nonlinear state-space model

ẋ = f(x, u)

I Find equilibrium point (x0, u0) such that f(x0, u0) = 0

Note: different systems may have different equilibria,
not necessarily (0, 0), so we need to shift variables:

x = x− x0 u = u− u0
f(x, u) = f(x+ x0, u+ u0) = f(x, u)

Note that the transformation is invertible:

x = x+ x0, u = u+ u0



General Linearization Procedure

I Pass to shifted variables x = x− x0, u = u− u0
ẋ = ẋ (x0 does not depend on t)

= f(x, u)

= f(x, u)

— equivalent to original system

I The transformed system is in equilibrium at (0, 0):

f(0, 0) = f(x0, u0) = 0

I Now linearize:

ẋ = Ax+Bu, where Aij =
∂fi
∂xj

∣∣∣∣∣
x=x0
u=u0

, Bik =
∂fi
∂uk

∣∣∣∣∣
x=x0
u=u0



General Linearization Procedure

I Pass to shifted variables x = x− x0, u = u− u0
ẋ = ẋ (x0 does not depend on t)

= f(x, u)

= f(x, u)

— equivalent to original system

I The transformed system is in equilibrium at (0, 0):

f(0, 0) = f(x0, u0) = 0

I Now linearize:

ẋ = Ax+Bu, where Aij =
∂fi
∂xj

∣∣∣∣∣
x=x0
u=u0

, Bik =
∂fi
∂uk

∣∣∣∣∣
x=x0
u=u0



General Linearization Procedure

I Pass to shifted variables x = x− x0, u = u− u0
ẋ = ẋ (x0 does not depend on t)

= f(x, u)

= f(x, u)

— equivalent to original system

I The transformed system is in equilibrium at (0, 0):

f(0, 0) = f(x0, u0) = 0

I Now linearize:

ẋ = Ax+Bu, where Aij =
∂fi
∂xj

∣∣∣∣∣
x=x0
u=u0

, Bik =
∂fi
∂uk

∣∣∣∣∣
x=x0
u=u0



General Linearization Procedure

I Pass to shifted variables x = x− x0, u = u− u0
ẋ = ẋ (x0 does not depend on t)

= f(x, u)

= f(x, u)

— equivalent to original system

I The transformed system is in equilibrium at (0, 0):

f(0, 0) = f(x0, u0) = 0

I Now linearize:

ẋ = Ax+Bu, where Aij =
∂fi
∂xj

∣∣∣∣∣
x=x0
u=u0

, Bik =
∂fi
∂uk

∣∣∣∣∣
x=x0
u=u0



General Linearization Procedure

I Why do we require that f(x0, u0) = 0 in equilibrium?

I This requires some thought. Indeed, we may talk about
a linear approximation of any smooth function f at
any point x0:

f(x) ≈ f(x0)+f
′(x0)(x−x0) — f(x0) does not have to be 0

I The key is that we want to approximate a given
nonlinear system ẋ = f(x, u) by a linear system
ẋ = Ax+Bu (may have to shift coordinates:
x 7→ x− x0, u 7→ u− u0)
Any linear system must have an equilibrium point at
(x, u) = (0, 0):

f(x, u) = Ax+Bu f(0, 0) = A0 +B0 = 0.



General Linearization Procedure

I Why do we require that f(x0, u0) = 0 in equilibrium?

I This requires some thought. Indeed, we may talk about
a linear approximation of any smooth function f at
any point x0:

f(x) ≈ f(x0)+f
′(x0)(x−x0) — f(x0) does not have to be 0

I The key is that we want to approximate a given
nonlinear system ẋ = f(x, u) by a linear system
ẋ = Ax+Bu (may have to shift coordinates:
x 7→ x− x0, u 7→ u− u0)
Any linear system must have an equilibrium point at
(x, u) = (0, 0):

f(x, u) = Ax+Bu f(0, 0) = A0 +B0 = 0.



General Linearization Procedure

I Why do we require that f(x0, u0) = 0 in equilibrium?

I This requires some thought. Indeed, we may talk about
a linear approximation of any smooth function f at
any point x0:

f(x) ≈ f(x0)+f
′(x0)(x−x0) — f(x0) does not have to be 0

I The key is that we want to approximate a given
nonlinear system ẋ = f(x, u) by a linear system
ẋ = Ax+Bu (may have to shift coordinates:
x 7→ x− x0, u 7→ u− u0)

Any linear system must have an equilibrium point at
(x, u) = (0, 0):

f(x, u) = Ax+Bu f(0, 0) = A0 +B0 = 0.



General Linearization Procedure

I Why do we require that f(x0, u0) = 0 in equilibrium?

I This requires some thought. Indeed, we may talk about
a linear approximation of any smooth function f at
any point x0:

f(x) ≈ f(x0)+f
′(x0)(x−x0) — f(x0) does not have to be 0

I The key is that we want to approximate a given
nonlinear system ẋ = f(x, u) by a linear system
ẋ = Ax+Bu (may have to shift coordinates:
x 7→ x− x0, u 7→ u− u0)
Any linear system must have an equilibrium point at
(x, u) = (0, 0):

f(x, u) = Ax+Bu f(0, 0) = A0 +B0 = 0.


