
Plan of the Lecture

I Review: control, feedback, etc.

I Today’s topic: state-space models of systems; linearization

Goal: a general framework that encompasses all examples of
interest. Once we have mastered this framework, we can
proceed to analysis and then to design.

Reading: FPE, Sections 1.1, 1.2, 2.1–2.4, 7.2, 9.2.1.
Chapter 2 has lots of cool examples of system models!!
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Notation Reminder

We will be looking at dynamic systems whose evolution in
time is described by differential equations with external
inputs.

We will not write the time variable t explicitly, so we use

x instead of x(t)

ẋ instead of x′(t) or
dx

dt

ẍ instead of x′′(t) or
d2x

dt2

etc.



Example 1: Mass-Spring System

um

x

Newton’s second law (translational motion):

F︸︷︷︸
total force

= ma = spring force + friction + external force

spring force = −kx (Hooke’s law)

friction force = −ρẋ (Stokes’ law — linear drag, only an approximation!!)

F = −kx− ρẋ+ u

Move x, ẋ, ẍ to the LHS, u to the RHS:

mẍ+ ρẋ+ kx = u

2nd-order linear ODE
k

m
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mẍ+ ρẋ+ kx = u

2nd-order linear ODE
k

m



Example 1: Mass-Spring System

um

x

Newton’s second law (translational motion):

F︸︷︷︸
total force

= ma = spring force + friction + external force

spring force = −kx (Hooke’s law)
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ẍ+
ρ

m
ẋ+
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ẋ = v (definition of velocity)
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m
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Example 1: Mass-Spring System

um

x

State-space model: express in matrix form

(
ẋ

v̇

)
=

(
0 1
− k
m − ρ

m

)(
x

v

)
+

(
0
1
m

)
u

Important: start reviewing your linear algebra now!!

I matrix-vector multiplication; eigenvalues and eigenvectors; etc.
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General n-Dimensional State-Space Model

state x =

x1...
xn

 ∈ Rn input u =

u1
...
um

 ∈ Rm

ẋ1
...
ẋn

 =

 A

n× n
matrix

x1
...
xn

+

 B

n×m
matrix

u1
...
um



ẋ = Ax +Bu
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Partial Measurements

state x =

x1...
xn

 ∈ Rn input u =

u1
...
um

 ∈ Rm

output y =

y1...
yp

 ∈ Rp y = Cx C– p× n matrix

ẋ = Ax+Bu

y = Cx

Example: if we only care about (or can only measure) x1, then

y = x1 =
(
1 0 . . . 0

)

x1
x2
...
xn
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State-Space Models: Bottom Line

ẋ = Ax +Bu

y = Cx

State-space models are useful and convenient for
writing down system models for different types
of systems, in a unified manner.

When working with state-space models, what are
states and what are inputs?

— match against ẋ = Ax+Bu
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Example 2: RL Circuit

IVS

VR

VL

+ �
+

�

+

�

−VS + VR + VL = 0 Kirchhoff’s voltage law

VR = RI Ohm’s law

VL = Lİ Faraday’s law

−VS +RI + Lİ = 0

İ = −R
L
I +

1

L
VS (1st-order system)

I – state, VS – input

Q: How should we change the circuit in order to implement a
2nd-order system? A: Add a capacitor.
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Example 3: Pendulum

`

mg

mg sin ✓

✓

✓
Te

external

torque

Newton’s 2nd law (rotational motion):

T︸︷︷︸
total
torque

= J︸︷︷︸
moment
of inertia

α︸︷︷︸
angular

acceleration

= pendulum torque + external torque

pendulum torque = −mg sin θ︸ ︷︷ ︸
force

· `︸︷︷︸
lever arm

moment of inertia J = m`2

−mg` sin θ + Te = m`2θ̈

θ̈ = −g

`
sin θ +

1

m`2
Te (nonlinear equation)
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Example 3: Pendulum

θ̈ = −g

`
sin θ +

1

m`2
Te (nonlinear equation)

For small θ, use the approximation sin θ ≈ θ

sinHΘL
Θ

-3 -2 -1 1 2 3

-3

-2

-1

1

2

3

θ̈ = −g

`
θ +

1

m`2
Te

State-space form: θ1 = θ, θ2 = θ̇

θ̇2 = −g

`
θ +

1

m`2
Te = −g

`
θ1 +

1

m`2
Te

(
θ̇1

θ̇2

)
=

(
0 1
−g
` 0

)(
θ1

θ2

)
+

(
0
1
m`2

)
Te
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Linearization

Taylor series expansion:

f(x) = f(x0) + f ′(x0)(x− x0) +
1

2
f ′′(x0)(x− x0)2 + . . .

≈ f(x0) + f ′(x0)(x− x0) linear approximation around x = x0

Control systems are generally nonlinear :

ẋ = f(x, u) nonlinear state-space model

x =

x1...
xn

 u =

u1
...
um

 f =

f1...
fn


Assume x = 0, u = 0 is an equilibrium point: f(0, 0) = 0

This means that, when the system is at rest and no control is
applied, the system does not move.
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This means that, when the system is at rest and no control is
applied, the system does not move.



Linearization
Linear approx. around (x, u) = (0, 0) to all components of f :

ẋ1 = f1(x, u), . . . , ẋn = fn(x, u)

For each i = 1, . . . , n,

fi(x, u) = fi(0, 0)︸ ︷︷ ︸
=0

+
∂fi
∂x1

(0, 0)x1 + . . .+
∂fi
∂xn

(0, 0)xn

+
∂fi
∂u1

(0, 0)u1 + . . .+
∂fi
∂um

(0, 0)um

Linearized state-space model:

ẋ = Ax+Bu, where Aij =
∂fi
∂xj

∣∣∣∣∣
x=0
u=0

, Bik =
∂fi
∂uk

∣∣∣∣∣
x=0
u=0

Important: since we have ignored the higher-order terms, this
linear system is only an approximation that holds only for small
deviations from equilibrium.
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Example 3: Pendulum, Revisited
Original nonlinear state-space model:

θ̇1 = f1(θ1, θ2, Te) = θ2 — already linear

θ̇2 = f2(θ1, θ2, Te) = −g

`
sin θ1 +

1

m`2
Te

Linear approx. of f2 around equilibrium (θ1, θ2, Te) = (0, 0, 0):

∂f2
∂θ1

= −g

`
cos θ1

∂f2
∂θ2

= 0
∂f2
∂Te

=
1

m`2

∂f2
∂θ1

∣∣∣∣∣
0

= −g

`

∂f2
∂θ2

∣∣∣∣∣
0

= 0
∂f2
∂Te

∣∣∣∣∣
0

=
1

m`2

Linearized state-space model of the pendulum:

θ̇1 = θ2

θ̇2 = −g

`
θ1 +

1

m`2
Te valid for small deviations from equ.
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General Linearization Procedure

I Start from nonlinear state-space model

ẋ = f(x, u)

I Find equilibrium point (x0, u0) such that f(x0, u0) = 0

Note: different systems may have different equilibria,
not necessarily (0, 0), so we need to shift variables:

x = x− x0 u = u− u0
f(x, u) = f(x+ x0, u+ u0) = f(x, u)

Note that the transformation is invertible:

x = x+ x0, u = u+ u0
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General Linearization Procedure

I Pass to shifted variables x = x− x0, u = u− u0
ẋ = ẋ (x0 does not depend on t)

= f(x, u)

= f(x, u)

— equivalent to original system

I The transformed system is in equilibrium at (0, 0):

f(0, 0) = f(x0, u0) = 0

I Now linearize:

ẋ = Ax+Bu, where Aij =
∂fi
∂xj

∣∣∣∣∣
x=x0
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, Bik =
∂fi
∂uk

∣∣∣∣∣
x=x0
u=u0



General Linearization Procedure

I Pass to shifted variables x = x− x0, u = u− u0
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General Linearization Procedure

I Why do we require that f(x0, u0) = 0 in equilibrium?

I This requires some thought. Indeed, we may talk about
a linear approximation of any smooth function f at
any point x0:

f(x) ≈ f(x0)+f
′(x0)(x−x0) — f(x0) does not have to be 0

I The key is that we want to approximate a given
nonlinear system ẋ = f(x, u) by a linear system
ẋ = Ax+Bu (may have to shift coordinates:
x 7→ x− x0, u 7→ u− u0)
Any linear system must have an equilibrium point at
(x, u) = (0, 0):

f(x, u) = Ax+Bu f(0, 0) = A0 +B0 = 0.
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