
1

ECE 486 Final Project:
The Reaction Wheel Pendulum

Fall 2017

Name:
RWP #:
 (painted on base of RWP)

ECE 486

i

Contents

1 Introduction ... 1

1.1 The Reaction Wheel Pendulum .. 1

1.2 Derivation of Mathematical Model ... 1

2 Friction Identification Using the Reaction Wheel .. 6

2.1 Velocity Estimation .. 7

2.2 PI Control for Friction Identification .. 8

2.3 Friction Compensation for Velocity Control .. 9

3 System Identification .. 11

3.1 Checking the Harmonic Frequency .. 11

3.2 Determination of Torque Constant (ku)... 12

4 Stabilizing the Inverted Reaction Wheel Pendulum ... 14

4.1 Linearization and Controllability .. 14

4.2 Inverted Stabilization Using Two-State Feedback ... 14

4.3 Inverted Stabilization Using Three-State Feedback ... 15

5 Observer Design .. 17

5.1 Observing Four States Together ... 17

5.2 Decoupling and Redesigning the Observer... 19

6 Up and Down Stabilizing Control ... 21

7 Swing-Up Control ... 22

Appendix A: Useful Physics Theory .. 23

Conversions (units of MKS) ... 23

Energy Equations .. 23

Appendix B: Implementation Notes ... 24

Simulink Notes ... 24

Windows Target Notes ... 25

1

1 Introduction

1.1 The Reaction Wheel Pendulum

Figure 1: The Reaction Wheel Pendulum

The Reaction Wheel Pendulum (RWP), shown in Figure 1, is a simple pendulum
with a rotating wheel at the end. The wheel is actuated by a 24-V, permanent magnet DC
motor mounted on the pendulum. This motor can produce a torque on the wheel, causing
the wheel to spin. According to Newton’s third law, there is an equal and opposite
reaction torque on the motor, and hence on the pendulum. This reaction torque can be
used to control the motion of the pendulum. We begin by obtaining the equations of
motion for the RWP. Next, control of only the reaction wheel’s speed is examined. As
part of this phase, we investigate counteracting the effect of friction in the motor by
“friction compensation”. (Comment: A similar identification technique was used in Lab 5
to test frictionless motor.) Finally control of the complete RWP is considered.

1.2 Derivation of Mathematical Model

The first step in any control system design problem is to develop a mathematical
model of the system to be controlled. Nonlinear models will first be derived using the
Lagrangian approach. These models will later be linearized, and the linear models will be
used to design control strategies.

Figure 2: Schematic Diagram

pθ

rθ

PENDULUM

REACTION
WHEEL

ECE 486 - Introduction

2

A schematic diagram of the RWP is shown in Figure 2. We have chosen the
angles as in Figure 2 because it is natural to use gravity to line up the pendulum hanging
down. The angle θp is the angle of the pendulum arm measured counterclockwise
(Comment: also this anti-clockwise direction is defined as positive direction.) from the
vertical when facing the system, and θr is the wheel angle measured likewise.

The RWP is provided with two optical encoders. These encoders are relative as
opposed to absolute encoders and thus measure only the relative angle between their
(fixed) stator and (movable) rotor. Their values are initialized to zero at the start of every
experiment. (Comment: That’s why when you run your control later in Chapter 4, 6, and
6, make sure the pendulum is initialized at its resting position with the motor at the
bottom.)

One encoder is attached to the fixed mounting bracket with its shaft attached to
the pendulum link. It thus provides a measure of the relative angle between the pendulum
and the fixed base. The other encoder is attached to the motor fixed at the end of the
pendulum. Its shaft is attached to the rotating reaction wheel and thus provides the
relative angle between the pendulum and wheel.

If we denote the encoder angles for the pendulum and rotor as pϕ and rϕ , we see
that

rpr

pp

ϕϕθ
ϕθ

+=
=

. (1)

Later we will discuss such issues as the noise and quantization associated with digital
measurement of these angles and the problem of estimating angular velocities from the
encoder values.

A convenient way to derive equations of motion for electromechanical systems is
the Lagrangian method. The Lagrangian method allows one to deal with scalar energy
functions rather than vector forces and accelerations as in the Newtonian method and is,
in many cases, simpler.

The RWP has two degrees of freedom. We take as generalized coordinates the
angles θp of the pendulum and θr of the rotor as shown in Figure 2. We also introduce the
following variables:

mp mass of the pendulum and motor housing/stator

mr mass of the rotor

m combined mass of rotor and pendulum

Jp moment of inertia of the pendulum about its center of mass

Jr moment of inertia of the rotor about its center of mass

p distance from pivot to the center of mass of the pendulum

r distance from pivot to the center of mass of the rotor

 distance from pivot to the center of mass of pendulum and rotor

k torque constant of the motor

ECE 486 - Introduction

3

i input current to motor

(Comment: Please pay close attention to the three  ’s above, and you can draw a
picture to visualize them if necessary or label them in Figure 2.)

We also introduce the quantity

J = Jp + mp
2
p + mr

2
r (3)

to represent the moment of inertia with respect to θp, and note the relationships

m = mp + mr , (4)

m  = mp p + mr r . (5)

(Comment: J is the total inertia when considering a non rotating rotor attached to the end
of the pendulum as an object. You treat rotor plus pendulum as an overall structure.)

Lagrange’s Equations
The Lagrangian method begins by defining a set of generalized coordinates

nqqq ,...,, 21 , to represent an n-degree-of-freedom system. These generalized
coordinates are typically position coordinates (distances or angles).

Next, compute the kinetic energy K , and the potential energy V in terms of

these generalized coordinates. Typically, potential energy is only a function of the
generalized coordinates, but kinetic energy is a function of the generalized coordinates
and their derivatives.

In a multi-body system, the kinetic and potential energies can be computed for

each body independently and then added together to form the energies of the complete
system. This is an important advantage of the Lagrangian method and works because
energy is a scalar-valued function, as opposed to a vector-valued function.

Once the kinetic and potential energies are determined, the Lagrangian,

),...,,,...,(11 nn qqqqL  , is then defined as the difference between the kinetic and potential
energies. The Lagrangian is therefore a function of the generalized coordinates and
their derivatives.

Finally, it can be shown that the equations of motion all have the form

nk
q
L

q
L

dt
d

k
kk

,...,1)(==
∂
∂

−
∂
∂ τ


 (2)

The variable kτ represents the generalized force (or torque) in the qk direction.
These equations are called Lagrange’s Equations and have the remarkable property of
remaining invariant with respect to arbitrary changes of coordinates.

ECE 486 - Introduction

4

1-a Write down the equations for the kinetic energy K and potential
energy V of the RWP. (Note that the kinetic energy of the system is
the sum of the kinetic energies of each degree of freedom. How
many degrees of freedom does the RWP have?) Also point out the
generalized coordinates and their derivatives. How many equations
of motion will we have? (Hint: See Appendix A for help with the
physics if you’re stuck. Comment: If it is not very helpful, check out
Wikipedia on Lagrangian Mechanics.)

Notice: the RWP includes the motor. So the motor cannot produce a net torque
on the RWP. Therefore, when it exerts a torque on the rotor it must exert an equal and
opposite torque on the pendulum. Use the relation τ = ki for motor torque.

1-b Write Lagrange’s equations (see Equation (2)) for this system.

Express the equations using three parameters:
J

mg
np


=2ω ,

J
k

, and

rJ
k

. (Notice that npω is the frequency of small oscillations of the

system around the hanging position. It is not the first derivative of
position.)

Derive kinetic energy and potential energy with respect to the generalized
coordinates: (Comment: For the reasons given above and we defined J in the first place,
we are about to derive equations of motion with respect to generalized coordinates, hence
in the following, subscript “pendulum+rotor” means θp motion, “rotor” means θr motion.)

KEpendulum+rotor =

PEpendulum+rotor =

KErotor =

PErotor =

Lpendulum+rotor =

Lrotor =

Lagrange Equationpendulum+rotor =

Lagrange Equationrotor =

ECE 486 - Introduction

5

Your final representation should be:










=

−=+

i
J
k

i
J
k

r
r

pnpp

θ

θωθ



 sin2

. (6)

So far we have ignored friction. The mass on the pendulum is large enough that
the friction on the pendulum link can be ignored. However, there is a significant amount
of friction on the rotor link (mostly due to motor friction). Fortunately, the rotor is
attached directly to the motor, making friction easy to model. The motor current i is
generated by a pulse width modulation system, which is controlled from the computer.
Due to current feedback, the current is proportional to the control command u from the
computer. The control variable used in the computer is scaled so that 10 units correspond
to maximum current. Therefore we can write

10, ≤= uukki u . (7)

We assume the friction is a function of the rotor speed F(ωr). Initially, we will
model friction in command units (units of 'u'). Applying Equation (7),










+=

+−=+

))((

))((sin2

r
r

u
r

r
u

ppp

Fu
J
k

Fu
J
k

θθ

θθωθ





. (8)

Finally, to clear up the clutter, we can also introduce variables
J

mga np


== 2ω ,

J
k

b u
p = , and using (8),

r

u
r J

k
b = becomes:





+=
+−=+

))((
))((sin

rrr

rppp

Fub
Fuba

θθ
θθθ



. (9)

This is a satisfactory representation of the RWP. Before we begin its control,
however, let us take a detour and consider speed control of a DC motor. This will allow
us to model and play with friction.

6

2 Friction Identification Using the Reaction
Wheel

In this section we will identify friction, using only the reaction wheel. Recall that
we made the assumption that the pendulum link has negligible friction. Isolate the motor
by attaching the pendulum arm to the mounting bracket using the provided hex spacers.
(Comment: Ask your TA to fix the pendulum arm.) We will design velocity controllers to
identify friction. Since velocity information is not directly available to us, we will explore
alternate methods. Keep in mind that in this part we are trying to model the real world,
not perform actual control systems analysis. Therefore the emphasis will be on
contrasting calculated or simulated behavior with actual behavior, rather than on
designing controllers to meet certain performance specifications.

Safety note: When doing experiments in this part, remember a couple of things.
Even though the motor controller has a safety mechanism to prevent the motor from
spinning extremely fast, the combination of spinning fast and running for a long time will
heat up or even burn out the motor. Be prepared to shut off the controller either when the
system runs long enough for you to collect data or when it becomes unstable, either
through Windows Target or the switch on the amplifier board. Consider 200 rad/s as
fast.

In past labs we have analyzed the dynamics of a DC motor, using the armature
voltage as the input. Here however, we select the armature current i as input. Then the
motor becomes merely a current-torque transducer (see Figure 3), meaning electrical

energy will be converted to mechanical energy.
The torque τ is applied to the reaction wheel (rotor) having moment of inertia Jr

and speed (relative to the motor housing) of ωr. There is also friction, due mainly to the
motor brushes and represented as a torque Fτ . So the motion of the wheel is given by

Frr kiJ τω −= (10)

using the motor (rotor) speed rr θω = as the output. Putting it in terms we are familiar
with, we get the following: (Comment: The Fτ above is “positive” while the)(rF θ below
is “negative”.)

))((rrrr Fub θθω  +== (11)

Figure 3: DC Motor Model

Figure 4: General Block Diagram of Velocity Controller

MOTORi τ = k i

CONTROLLER MODEL velocity (ω)

ωREF u CL
K br /s

ECE 486 - Friction Identification Using the Reaction Wheel

7

2-a Design a proportional controller with a rise time of 0.2s and no steady
state error. Use an input step of 100 rad/s. Assume br = 198 (rad/s).
Simulate your controller using Simulink. (See Figure 4)

2.1 Velocity Estimation

Consider Equation (11) but ignore friction for now. Of course, this is an ideal
model, so a few real-world issues must be dealt with.

Recall from Section 1.2, page 5, that the control input is limited to 10. That is
simple enough to simulate in Simulink. (Hint: Check out the “Saturation” block.)

Another issue is the determination of angle from the encoder output. Think of the
encoder as the Wheel of Fortune wheel; counting ticks tells you that it’s turning. (There’s
also a provision for determining direction of spin; this is analogous to the “ticker”
sounding different in either direction.) The ticks add as the angle changes. There are two
issues here:

First, how does the software know where “zero” is? By convention, zero is the
encoder angle when you “Start” the run.

Second, how do you determine angle from ticks? Since the motor encoder has
4000 ticks/revolution, multiply by 2π/4000 to scale to radians. (The pendulum encoder
has 5000 ticks/revolution.) One other detail: the reaction wheel encoder and motor use
opposite sign conventions in this setup. In other words, when a positive current is applied
to the motor, it spins in a direction that the encoder calls negative. Therefore, place an
inverter before the input to the motor.

The encoder measures position. How can the velocity dtdθω = be obtained?
This is done either by using a transfer function that approximates a derivative or by using
a discrete version of the same. We will implement both and compare them.

A simple discrete version can be found by using Euler’s method (FPE pp.167, or
FPE 3rd Ed pp. 138). It states that

t
ttftf

dt
df

t ∆
∆−−

=
→∆

)()(lim
0

 (12)

The discrete derivative approximation is implemented by using the “Unit Delay”
block in Simulink. In order to keep life simple, when doing calculations we will still
consider our velocity estimate to be ideal. Applying Equation (12) to our system,

t
tttt rr

∆
∆−−

≅
)()()(θθ

ω (13)

Trick: To make sure you don’t have to change Δt each time you change the
simulation step size (it must be fixed-step) in Simulink, use “str2num(get_param(bdroot,
'FixedStep'))” in place of Δt. This causes Simulink to look up the value you’ve entered in
the Fixed Step Size field in Configuration Parameters.

The continuous derivative approximation can be understood by looking at the
frequency response of the derivative function s. We want to keep the response similar at
low frequencies, but refrain from amplifying the high-frequency noise. This is

ECE 486 - Friction Identification Using the Reaction Wheel

8

accomplished by placing a pole at a sufficiently high1 frequency, giving the transfer
function

1+s
s

τ
, (14)

where ω = 1/τ is the pole location.
For your continuous derivative, use Equation (14) with τ = 1/50. Now that we

have a velocity estimate, we can solve the following problem:

2-b Implement your controller designed above in Windows Target (see
Windows Target Notes in Appendix B).

 Use a “Manual Switch” to choose between your continuous and
discrete velocity estimates. Pick the better derivative.

 Compare the simulated response in 2-a with the Windows Target
response in here 2-b. What is the source of this discrepancy?

The answer to question  leads us to the ultimate goal of this section: friction
identification and modeling.

2.2 PI Control for Friction Identification

As you know, we can counteract a constant disturbance by adding an integrator.

2-c Choose a PI controller to regulate the system to 100 rad/s (similar to
Question 2-a). Simulate it, and also implement it using Windows
Target. Compare results, especially steady-state velocities and
steady-state control efforts. Explain why the steady-state control
effort differs.

This nonzero control effort can be used to our advantage. We can use it to
characterize friction. It may seem odd to be doing system identification while applying a
controller; this is called closed-loop system identification, and is a relatively new and
exciting area of study. In this case, closed-loop system identification allows us to work
with a stable system and use straightforward procedures (c.f. open-loop friction
identification in Lab 4).

Let’s see how this works. Consider Equation (11) at steady-state, with friction
included.

0))((=+== rrrr Fub θθω  (15)

1 Sufficiently high: application-specific, often selected iteratively by simulation or test runs.

ECE 486 - Friction Identification Using the Reaction Wheel

9

We see that for non-zero friction, the control effort will be non-zero as well. In
fact, the value of friction for any velocity is merely the steady-state control effort for a
setpoint of that velocity. In other words,

clr uFu +−=)(θ (16)

where ucl is the closed-loop controller.

2-d Run the motor at various speeds (i.e. vary the setpoint) and record
the steady-state control effort for each speed. Do this for both
positive (counter-clockwise) and negative (clockwise) velocities. Fit
this to two lines (hint: see MATLAB command “polyfit”), and note the
static and dynamic frictions in both directions (they will probably
differ). Write down the expression for)(rF θ .

Now that we have characterized friction, we can explore a way of negating its
effects on our system.

2.3 Friction Compensation for Velocity Control

Friction compensation is a popular topic. Friction affects all systems, and can add
to or modify system dynamics, bring in noise, decrease resolution, and introduce offsets.
We have implemented one method of dealing with offsets introduced by Coulomb
friction – integral control. However, the dynamics of the system are still affected by
friction. By considering friction as a linear function (a velocity gain and offset for each
direction), we see another way of dealing with it. Since we now know the value of
friction (in control units; see Equation (7) and the associated discussion on page 5) for
any speed, we can let Simulink “adjust” for friction by counteracting its value as a
function of speed (see Figure 5). (Tip: Keep in mind that a “Switch” block can be used to
implement a conditional function.)

2-e Implement friction compensation in Windows Target.2 A proportional
control should now regulate the system to (or very close to) the
desired velocity. Is integral control still needed, or is proportional
control sufficient? Observe the effects of PI control. Now, remove
your controller and simply implement friction compensation. What
do you expect will happen? Reason out what you expect to see, then
manually start the motor spinning in either direction and see what
happens. Try adjusting your dynamic friction gains and see how the
behavior changes.

2 Typing fricblocks at the MATLAB prompt opens a block that calculates asymmetrical friction.

ECE 486 - Friction Identification Using the Reaction Wheel

10

Friction compensation can do wonders for velocity control. Now that friction is
well understood and accurately modeled, we can return to the overall Reaction Wheel
Pendulum. First, we will do some System Identification and Model Verification, then
finally delve into control.

Figure 5: Functionality of Friction Compensation

FRICTION-
LESS

MOTOR

FRICTION

Σ velocity (ω)

F = -(bω+c)

FRICTION
COMPENSATION

F' = bω+c

OPEN-LOOP SYSTEM SHOWING FRICTION EXPLICITLY OPEN-LOOP SYSTEM WITH FRICTION COMPENSATION

PLANT

u CL Σ
FRICTION-

LESS
MOTOR

FRICTION

Σ velocity (ω)

F = -(bω+c)

PLANT

u CL

11

3 System Identification
We can now determine the parameters of the Reaction Wheel Pendulum (RWP).

Here we set up the RWP in the standard configuration. The parameters can be determined
from physical construction data and by direct experiments on the system. It is useful to
combine both methods to find all the parameters, and to make cross-checks. It also
verifies that our mathematical model is reasonable.

By measuring the dimensions of the components, weighing them, and computing
moments of inertia using simplified formulas we find:

mp = 0.2164 kg

mr = 0.0850 kg

Jp = 2.233◌ּ10-4 kg◌ּm2

Jr = 2.495◌ּ10-5 kg◌ּm2

p = 0.1173 m

r = 0.1270 m

3-a Use the relations and definitions given in Section 1.2 to get values for
J, m,  , and npω . Also find 'npω . (Defined by Equation (17) below)

In order to verify the natural frequency, we can do a free swing test (below).

3.1 Checking the Harmonic Frequency

3-b Set the motor input u to zero. Initialize the pendulum to 90° and let it
swing freely. When the wheel stays stuck to the pendulum, i.e. the
encoder reading rϕ is constant, determine the frequency of
oscillation (measnp 'ω).

This measured frequency is different from ωp because the rotor is contributing to
the moment of inertia. The quantity you measured is actually

r
np JJ

mg
+

=
'ω (17)

Compare the experimental value with the theoretical value, computed from the
parameters (all known).

Notice also that the decay in the swing amplitude is slow. On the other hand, if
the rotor is excited with the maximum current, and then the current is removed, it takes

For you to find:
J = kg◌ּm2
m = kg
 = m
ωnp = rad/s
ωnp′ = rad/s
measured frequency of oscillation:
ωnp′meas = rad/s

ECE 486 - System Identification

12

only a few seconds to come to complete rest. In both cases, friction is the only
deceleration force (for the pendulum, consider conservation of energy and for the rotor,
apply Newton’s first law of motion). This helps to validate our assumption that the
friction in the pendulum link is negligible, but friction in the motor is not.

3.2 Determination of Torque Constant (ku)

We must consider one implementation detail: the signs on the inputs and outputs.

3-c Verify the signs:

 With NO input to the motor, check that the sign conventions on
rotor and pendulum angle are consistent with Figure 2. If not, add –1
signs where necessary.

 Apply a POSITIVE input to the motor to check that the rotor
velocity and INITIAL pendulum velocity are consistent with Equation
(9), ignoring friction. If not, add –1 gains where necessary.

If any –1 signs are necessary, these are purely an implementation detail, and
should not be considered as part of your controller. They will be absolutely critical
however, and if you forget them, they can result in total instability of a controller that
should be stabilizing.

With that taken care of, there are two parameters that we still don’t know. These
are bp and br. By examining Equation (18), we see a way to find bp and br.





+=
+−=+

))((
))((sin

rrr

rppp

Fub
Fuba

θθ
θθθ



 (18)

Our sensors directly measure pθ , rθ . We developed an approximation for pθ and

rθ in section 2.1. If we estimate pθ and rθ by differentiating again and use our friction

model from section 2.3 to replace)(rF θ , the only unknowns in the top equation of (18)
are bp and br. Solving for them is trivial, assuming we can find the second derivative.
Alas, Figure 6 shows that the first derivative is noisy, and the second derivative is
worthless. A better approach would find a polynomial fit for pθ , rθ , and differentiate

this fit to get clean values for pθ , rθ , pθ and rθ . These clean values can then be put into
Equation (18) to solve for the torque constants. In practice, a cubic fit of the RWP
response to a step input from rest gives good results.

ECE 486 - System Identification

13

Figure 6: Derivative approximations add significant noise

3-d Use the method described above to find bp and br. A partial m-file is
provided for you on the lab website. Use a step of magnitude 5 for u.

Another way to determine bp and br (and thus ku), uses equation (7). The i is
determined for the maximum input u of 10. Properties of the motor and controller tell us
the value of imax and k, giving

bp = 1.08

br = 198
Your results should approximately agree (within 30%).

14

4 Stabilizing the Inverted
Reaction Wheel Pendulum

4.1 Linearization and Controllability

The Reaction Wheel Pendulum (RWP) has equations of motion, ignoring friction,
given by





=
−=+

ub
uba

rr

ppp

θ
θθ



 sin
 (19)

4-a Linearize this system about the equilibrium position of pθ = π. Write
the state-space model for this system in the blanks provided in
Equation (20) and check for controllability from the single input u.
Note: Your new state variables are delta-angles, where pδθ = pθ – π

and rδθ = rθ .

u

u

r

r

p

p



















+





































=



















+=

θ
δθ
θ
δθ





 BxAx

 (20)

The system should be controllable; otherwise we would need to add another
actuator to be able to complete the project.

4.2 Inverted Stabilization Using Two-State Feedback

In the interest of keeping our controller as simple as possible, and because we
don’t care about the position of the rotor, let us first design a PD controller to regulate the
pendulum angle, completely ignoring the rotor angle and velocity. Here we are only
considering the first equation of Equation (19) – so we actually have a 2nd order system.

ECE 486 - Stabilizing the Inverted Reaction Wheel Pendulum

15

4-b Design a state-feedback controller for the RWP using the MATLAB
command place. Constraints for pθ : keep 'npnp ωω > (npω as found in

Section 3) – do you know why it must be greater? Make 21<ζ ,
and keep the K values less than 300. (Hint: meet the last constraint
by trial and error.) Simulate your system using the nonlinear
“Reaction Wheel Block Diagram Model” and “Reaction Wheel
Animation” blocks – see Appendix B (don’t bother estimating velocity;
just use the exact states). Simulate  IC deviation (pδθ or pθδ 
nonzero),  a pulse (simulating a tap) disturbance input to the
pendulum arm (τp) with duty cycle of 5% and period of 4 seconds,
and  a constant disturbance input to the pendulum arm. Is the
response satisfactory (i.e. stable and fairly fast)? Now look at rotor
velocity. Do you see any problems?

Table 1: Robustness Comparisons

 Two-State Feedback
(4.2)

Three-State Feedback
(4.3)

Observer
(5.1)

 Max IC deviations pδθ pθδ 

 Max pulse
 Max disturbance

Note: Remember that the controller uses delta states, whereas the nonlinear

model outputs absolute states. You will need to remove the offset(s) accordingly.
(Comment: In order to fill out the first row in the above table, you need to test IC
deviations for both pδθ and pθδ  . But you only test one at a time, i.e., for example, when

you test IC deviation, add small deviation to pδθ but keep zero deviation for pθδ  . Then

you test pθδ  similarly.)
As you can see, the rotor velocity stays constant at steady-state without any

disturbances. However, with a constant disturbance, however small, the motor undergoes
a constant acceleration to counteract it, which causes the velocity to increase without
bound. Since we have a bound on velocity (there is always a bound on velocity!), this is
not practical for implementation. Therefore we must feedback the rotor velocity
information.

This may raise a question: In simulation, if a constant u can cause velocity to
become arbitrarily large, why can’t that happen in our system? Because as velocity
increases, friction increases, and (u-F) decreases until friction effectively “cancels out” u!

4.3 Inverted Stabilization Using Three-State Feedback

Consider the eigenvalues of the 4-state state-space model you found in Question
4-a. The zero eigenvalues represent the rotor position and velocity. Our goal is to pull the

ECE 486 - Stabilizing the Inverted Reaction Wheel Pendulum

16

velocity eigenvalue into the LHP, but leave the position eigenvalue alone. This will
stabilize the rotor velocity, while still ignoring its position.

4-c Using the same constraints as 4-b, design a state feedback controller
with pθ , pθ , and rθ feedback. Place the rθ eigenvalue between the
other two LHP poles. (Hint: MATLAB “place” or “acker” may work –
just keep the fourth pole at zero. This makes the fact that we’re
ignoring rθ evident.) Simulate conditions , , and  from 4-b
again. Record in Table 1 the maximum IC deviation that the system
can correct, as well as the maximum tap. Use Windows Target to
implement this controller on the actual RWP.

If the RWP is too sensitive to be positioned and doesn’t stay up very long, check
the rotor velocity. If the RWP is spinning up to a high velocity before falling, then your

rθ feedback gain may be too small. Adjust the gains until you get a satisfactory response,
then show it to your TA. When the RWP is successfully stabilized, you should see limit
cycle behavior3 .

4-d Include friction compensation (which you designed in Question 2-e)
and observe the change in behavior. Demonstrate it to your TA.

We will next explore the observer’s approach.

3 Persistent (but not necessarily precisely) repeating behavior that does not die out is called Limit

Cycle Behavior.

17

5 Observer Design
We will now design an observer for the Reaction Wheel Pendulum (RWP) to

replace the full state feedback controller we designed previously. The observer will
estimate both velocities of the system. And since we’re designing a full-order observer, it
will also “estimate” both positions.

Look back at your full-state feedback design; you pulled all of the open-loop
poles except the rθ pole into the left half plane. When we design an observer, however,
we must place all of the poles in the left half plane; our criteria being, as before:
“significantly farther” than the desired closed-loop poles. See Figure 7 for an illustration
of this (not to scale, and relative pole locations may vary by design).

Figure 7: Illustration of Pole Locations

5.1 Observing Four States Together

RWP coordinate
change

Observer

φ
p

φ
r

observed

states

δ θ
p

δ θ
r

u
- K

Figure 8 shows the structure of our closed-loop system with observer-based
control. In Simulink, the observer block can be modeled as a State-Space block.
However, in order to do so, we need to define the A, B, C, and D matrices (where the
state equation is defined as { uu DCxyBAxx +=+= , }).

The standard differential equation for an observer is

Figure 8: Block Diagram of System with Observer

OPEN-LOOP POLES CLOSED-LOOP POLES OBSERVER POLES

ECE 486 - Observer Design

18

u
u

DxCy
)yL(yBxAx

+=
−++=

ˆˆ
ˆˆ̂

 (21)

Keeping in mind that we want x̂ as the states, x̂ as the outputs, and both delta-
angles (collectively called y , where y = [δθp , δθr]T) as well as u as the input, Equation
(21) can be manipulated to give







=









+−=

xIz
y

L][BxLC)(Ax

4 ˆ

ˆˆ
u

 (22)

where z represents the output of the observer. You should be comfortable going
from Equation (21) to Equation (22). (Hint: when doing matrix algebra, always check
dimensions!)

In particular, what is C? From Equation (21), we see that y and ŷ must have the
same dimension, and, in order for their difference to be meaningful, must represent the
same physical phenomena (e.g., subtracting a velocity from an angle is meaningless).

since











== CCx,y (fill in your C matrix)

 Also, why 4I ? (4I represents the 4 × 4 identity matrix) Because we want to
output all of our states individually. If we used a scalar z and defined

4321 ˆˆˆˆ xxxxz +++= , then instead of having more information from the observer, we
would actually have less!

5-a Using the MATLAB place command, place the observer poles
significantly farther than your closed-loop poles (as designed in
Section 4.3). Five to ten times faster is a good distance. Keep these
poles near or on the real axis. Also note that the ‘place’ command
cannot solve for repeated roots. Check the full system’s eigenvalues
using MATLAB eig to make sure they are stable.

5-b Simulate your observer design in Simulink. Test and record the same
things you tested in Question 4-b. How does this controller compare
to the three-state feedback controller? Now vary the nonlinear
model’s parameters slightly. Does the controller still work?

The extremely high sensitivity of this controller to variations in the plant may
surprise you, but in the next section we will explore the RWP model in more depth in
order to understand why this is the case, and find a way to modify your controller in order
to make it less sensitive to plant variations.

ECE 486 - Observer Design

19

5.2 Decoupling and Redesigning the Observer

Recall that the state-space model for our system has the form

u

b

ba

r

p


















−

+



















=
0

0

0000
1000
000
0010

xx (23)

We see that A has a specific form – the top right four values and the bottom left
four values are zero. There is a special term for that form – block diagonal. Let us take a
small digression and explore the implications of A being in block diagonal form. If we
rewrite the system as

u
,

,








+
















=








Q
P

x
x

N
M

x
x

43

21

4,3

2,1

0
0




 (24)

where the “elements” of these vectors and matrices are now vectors and matrices
themselves, this representation of A makes A look like a diagonal matrix. Separating the
two vector equations, we get





+=
+=

u
u

QNxx
PMxx

4,34,3

2,12,1




 (25)

And then writing each vector equation as a system,

[]

[]










=







+








=

=







−

+







=

4,34,34,3

2,12,12,1

,
0

00
10

,
0

0
10

Cxx

Cxx

u
b

u
ba

r

p





 (26)

This is quite significant. It says that the dynamics of these subsystems are
decoupled, or independent of each other. This is a direct result of A being in block
diagonal form. (Note that this does not mean that you can control the dynamics of both
arbitrarily – the same input u applies to both.) Another implication is that the eigenvalues
of A are the union of the eigenvalues of M and the eigenvalues of N.

This last fact can be used to our advantage. We wish to make the observer
response converge very quickly, and therefore want to set the eigenvalues of (A-LC) to
be fast. Remember that we’re now designing the internal dynamics of the observer; the
input u is not applied here. Here is the breakdown of (A-LC):



















−−
−−
−−
−−

=−



















=







=

00
10
00
01

)(,,
0100
0001

4241

3231

2221

1211

42

32

22

12

41

31

21

11

ll
ll
lla
ll

l
l
l
l

l
l
l
l

LCALC (27)

ECE 486 - Observer Design

20

So the first and third columns can be modified. Must the values that are not on
the block diagonal be nonzero? For example, look at l12. It determines the effect of 3x̂ on

1x̂ . But since the dynamics of the first two states are decoupled from the last two, that
term is unnecessary. In other words, we can arbitrarily determine the dynamics of the
observer using only l11, l21, l32, and l42! In fact, the other terms only serve to make the
observer more sensitive to model errors and noise.

If the dynamics are independent, then why did MATLAB give nonzero off-diagonal
terms? Answer: the algorithms MATLAB uses do not check for independence.

5-c Split up the system as shown in Equation (26), and use MATLAB to
find the L matrix. Compare it with the L matrix found in Question 5-a.
Now take the L matrix found in Question 5-a and zero out the terms
off the block diagonal. Compare again. Is it important to split up and
redesign, or do you find it sufficient just to zero out the terms off the
block diagonal? (Hint: Look at their effects on the observer
eigenvalues.) Repeat Question 5-b with the new L matrix. Any
improvement?

Now we have a good design, and are ready to put it to work on the actual RWP.

5-d Implement your observer design with Windows Target on the RWP.
How does this controller compare to three-state feedback control?

Sure enough, this design does not yield a controller as robust as the full-state
feedback controller. However, this demonstrates the tradeoff between performance and
design time in real-world engineering. Although the full state feedback design (including
derivative approximations, etc.) may have been “easier” for you, in general the observer
is easier to design because the design process is methodical.

21

6 Up and Down Stabilizing Control
We will now explore the topic of switching control. We will first discuss this

topic, and then consider the example of the RWP, which we are quite familiar with. We
can then design a switching controller for the RWP without much trouble.

Most systems that we control are nonlinear. We simply choose an operating
condition and linearize about that condition. However, what if we want to control this
system over a broader range of operating conditions? For example, airplanes are
extremely nonlinear systems. Fighter jets are even more so, due to the enormous range of
airspeeds and maneuverability requirements. A nonlinear controller would be extremely
complicated and may even become unstable near the extremes, due to modeling errors.
The approach used is to switch between many different linear controllers based on the
states. Each controller uses a different model for the system, and applies a different type
of controller, but all share the broad goal of keeping the jet in the sky4. The difficult
aspect of switching control is handling the switching transients: When switching from
one model and controller to a completely different one, how do you guarantee that the
system won’t go unstable?

To explore this further, let us consider again the RWP. Unlike a fighter jet, a
pendulum has only two equilibrium points: up and down. We have designed a controller
to balance up. If we make a switching control to balance down when the pendulum
swings past the upward stabilizable region, will we be able to guarantee stability?
Keeping in mind that the downward equilibrium is a stable equilibrium, it is not rocket
science to determine that after the switching transients, the down controller will be able
to stabilize the pendulum.

6-a Design a switching controller that will stabilize the RWP in either the
up or down position based on the pendulum angle θp. To make your
life easier, use three-state feedback controllers as in Section 4.3.
(Hint: use the “Switch” block controlled by a function of θp—see
figure above.) First simulate it, then implement it using Windows
Target.

If you don’t see the effects of the controller in the down position, swing the
pendulum freely and see how long it takes for the swinging to stop. There should be a
significant decrease in that time with your new controller.

4 Controlling a nonlinear plant by switching between a family of linear controllers, each tuned for

certain operating conditions, is called gain scheduling

Figure 9: Implementing Switching
Control

22

7 Swing-Up Control
After all that talk of avoiding nonlinear control by using switching control, let us

now look at nonlinear control itself. It can be a very useful tool, especially when it is used
along with other control algorithms. We can use switching control to switch between a
nonlinear controller and a linear controller. This may sound complicated, but actually
“switching control” is nothing more than an algorithm that switches between multiple
controllers. We can use a nonlinear controller to get the system into the region that is
stabilizable with linear control, and then switch over to the linear controller. That is the
approach we will use to swing-up the pendulum and then stabilize it at the top position.

The concept of nonlinear control may sound daunting, but look at the problem in
this way: how can we pump energy into this system properly, and how can we get the
system to recognize that it is in the “region” of stabilizability? A clue lies inside that
question: energy. We can measure kinetic and potential energy, we want a certain setting
of kinetic and potential energy, and we can apply kinetic energy.

Let us look at this from a naïve point of view. Assume that we want to tap the
pendulum really hard at the bottom, but just hard enough to get it to swing up and come
to rest (briefly, of course) at the top. (Do not try this! The RWP is fragile.) You can
imagine tapping it harder or softer based on how high up it swings. Is there a way to
figure out just how hard you need to tap it? Yes! The energy at the bottom is purely
kinetic, and you want the energy at the top to be purely potential. Therefore, you can
compute how intensely you must tap.

On the actual RWP, you have the added advantage that the motor is mounted on
the pendulum, so you do not need to tap. Rather, you can apply a long-term force (see
Figure 10). But there is a disadvantage to this: the force is limited by the maximum
velocity of the rotor (as we have seen before). It turns out that the motor cannot provide
the necessary energy input in a single swing. Therefore, the motor must dump some
energy during one swing, then dump energy in the other direction during swingback, and
so on until the RWP has the correct amount of energy. Figure 11 shows a plot of the
intersection pendulum energy and the ideal energy when the pendulum is balanced in an
inverted position

There is, of course, the added complication of friction. To account for this, we can
simply dump in more energy than required without friction and hope it works. This
process takes much trial and error.

This is only one of many methods of doing swing-up control. There are many
implementation details involved in making a swing-up controller. Have fun!

Figure 10: Illustration of Nonlinear Swingup Control.

Light grey is the starting position, black is the final position after applying u.

u < 0 u > 0 u < 0 u > 0 u < 0 u > 0

23

pθ
pθ

Appendix A: Useful Physics Theory

Conversions (units of MKS)

• Length (m), Mass (kg), and Time (s) are basic units.
• Force is mass • acceleration, and has units of newtons (N = kg•m/s2).
• Energy is force applied over a certain distance, and has units of joules (J = N•m = kg•

m2/s2).
• Power is an impulse of energy, with units of watts (W = J/s = N•m/s).
• Inertia is the change in force required to make a unit change in acceleration. It has

units of change in force per change in acceleration, or N/(m/s2).
• Moment of inertia is the analog of inertia for rotational objects. It is the change in

torque required to make a unit change in angular acceleration. It has units of change
in torque per change in angular acceleration, or N◌ּm/(rad/s2) = kg•m2.

Note: (rad) is considered unitless

Energy Equations

Potential energy …
 … for a mass = mgh
 … for a spring = ½ kx2
Kinetic energy …
 … for a mass = ½ mv2
 … for a moment of inertia = ½ Jω2

Figure 11: Pendulum Energy (surface) intersected by ideal energy (plane)

24

Appendix B: Implementation Notes

This appendix contains many details that will be critical during simulation and

actual control. Keep this nearby, and refer to it often.

Simulink Notes

• To start Simulink: First open MATLAB. Then either type simulink in the
command window, or click on the Simulink button (enlarged below) on the
toolbar.

• Setting up Simulink parameters: When running a Simulink simulation, you need

to set up a few parameters in order to keep conformity with Windows Target.
From the Simulation menu, select Configuration Parameters, then in the Solver
Options box, set Type to "Fixed-step" and "ode1: Euler".

• Changing simulation Start/Stop time: You can also change Start Time and Stop
Time in the Simulation Parameters box.

• Nonlinear RWP model: There is a nonlinear RWP model available for simulation.
To find it, type pend_blks in the MATLAB command window. You will need the
Reaction Wheel Block Diagram Model (nonlinear model) and the Reaction Wheel
Animation (animation block). Points to remember:

o For the Reaction Wheel Block Diagram Model, "Tau1" corresponds to the
pendulum arm. (That arm is not actuated, but that's where the disturbances
are applied.)

o "Tau2" corresponds to the rotor. (That's where the control effort should be
applied.)

o Don’t forget to include a Saturation block (to saturate the control effort at
± 10) before "Tau2".

o The nonlinear model outputs encoder states (rp ϕϕ ,), but your controller
uses delta states (δθp instead of θp).

o You can change the initial conditions of the Reaction Wheel Block
Diagram Model by double-clicking on the block. You should only have to
change the first initial condition (pendulum position, where π signifies
upwards).

o To slow down animation speed, go to Simulation » Configuration
Parameters, and decrease the "Max step size". (This will force Simulink
to do more calculations, thus slowing down the simulation.)

25

Windows Target Notes

• To make a Windows Target model: At the MATLAB prompt, type
rtwintgt_starter. Delete the PCIINT32_DAQ block (we will use different I/O
blocks for the RWP) and save the model in your c:/ directory with a filename 22
characters or less. Make sure to change MATLAB’s current to your directory
where you just saved the file. Then go to the Simulation menu, select
Configuration Parameters, and make sure the Fixed-step size is 0.005. This sets
the sample rate of your controller.

• To interface to the RWP: Blocks are available for you which make interfacing
with the RWP transparent. To access them, type c6xlib at the MATLAB command
window. The “Encoder Input” block outputs encoder ticks, which must be
converted into angles. The “PWM Output” block takes an input of command units
(in control units – see Equation (7) and the associated discussion on page 5), and
automatically saturates at ± 10.

• Encoder Input block details: The system has two encoder values. We will only
use one Encoder block for both data channels. The encoder block can output
either channel 0 or 1, or both. To access both, use the Demux block at the Encoder
block output. The upper output of the Demux is channel 0 and the bottom channel
is channel 1. See Table 2.

Table 2: Encoder settings

Motor encoder is Encoder 2 (channel 1)
Pendulum encoder is Encoder 1 (channel 0)

Also see Figure 12 for more

clarification. (If you simply enter 0 in
the "Channel(s) to Use:" box, only
channel 0 of the data will be output.)
Notice that here, only the pendulum
encoder output needs to be negated,
whereas in Section 2, the motor encoder
needed to be negated. This has to do
with the orientation of the encoders on
the RWP and our designation of
positive angles. Generally, encoders
designate positive as the clockwise
direction when looking towards the
encoder along the shaft.

Figure 12: Reading Encoders

26

• To run a Windows Target model:

o First step is to compile (or build) your real-time controller. From
the Tools->Real-Time Workshop menu, select Build Model. Or
you can click anywhere in the Simulink window and type “Ctrl-B”
and this will also build your real-time controller. Before going to
the next step, make sure your real-time controller has been
completely built by watching the MATLAB command window for
the message “Sucessful Completion of the Real-Time Workshop
Build”

o To setup your scope blocks for plotting and data storage double
click on the Simulink scope blocks to open them. Right click in
the plot area to set the data’s Y range. Click the scope window’s
“Parameters” button to set the scopes time range. In the
“Data History” tab make sure “Limit data points” is unchecked
and “Save date to workspace” is checked. Assign a “Variable
name” and change the format of the data to type “Array”.

o (Comment: This note is outdated, problably valid for very old
Matlab. In order to run Windows Target with newer Matlab and
Simulink, you need to follow the notes in your lab book. See notes
in Lab 5.) There are two steps to start your real-time controller.
First you must “Connect to Target” or in other words load your
real-time controller to the Windows Target run engine. Select the
Simulation->Connect to Target menu item or click anywhere in
your simulink model and type “Ctrl-T” or click the “Connect to
Target” icon just to the right of the “Start” icon. After
connecting to the target click the “Start” icon to start
your real-time controller.

o To stop your real-time controller click the “Stop” icon
.

Note: If you make simple gain changes or aesthetic changes, you need not
re-"Build" the code. However, if you change anything else, such as
connections between blocks, block parameters, simulation parameters, etc,
you will need to rebuild. If you don't, you will either get an error message,
or see that the response didn't change since your last revision.

	The Reaction Wheel Pendulum
	Fall 2017
	Name:
	RWP #:
	1 Introduction
	1.1 The Reaction Wheel Pendulum
	1.2 Derivation of Mathematical Model
	Lagrange’s Equations

	2 Friction Identification Using the Reaction Wheel
	2.1 Velocity Estimation
	2.2 PI Control for Friction Identification
	2.3 Friction Compensation for Velocity Control

	3 System Identification
	3.1 Checking the Harmonic Frequency
	3.2 Determination of Torque Constant (ku)

	4 Stabilizing the Inverted Reaction Wheel Pendulum
	4.1 Linearization and Controllability
	4.2 Inverted Stabilization Using Two-State Feedback
	4.3 Inverted Stabilization Using Three-State Feedback

	5 Observer Design
	5.1 Observing Four States Together
	5.2 Decoupling and Redesigning the Observer

	6 Up and Down Stabilizing Control
	7 Swing-Up Control
	Appendix A: Useful Physics Theory
	Conversions (units of MKS)
	Note: (rad) is considered unitless

	Energy Equations

	Appendix B: Implementation Notes
	Simulink Notes
	Windows Target Notes

