UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN
 Department of Electrical and Computer Engineering
 ECE 486: Control Systems
 Homework 9 Solutions

Modeling $\underbrace{\text { G }}$ full-state feedback:

Solutions

Recall the Controllable Canonical Form: Starting with

$$
\left(s^{3}+a_{2} s^{2}+a_{1} s+a_{0}\right) Y(s)=\left(b_{0}+b_{1} s+b_{2} s^{2}\right) U(s)
$$

we obtain the state space model,

$$
\begin{aligned}
\dot{x} & =\left(\begin{array}{ccc}
0 & 1 & 0 \\
0 & 0 & 1 \\
-a_{0} & -a_{1} & -a_{2}
\end{array}\right) x+\left(\begin{array}{l}
0 \\
0 \\
1
\end{array}\right) u \\
y & =\left(\begin{array}{lll}
b_{0} & b_{1} & b_{2}
\end{array}\right) x+(0) u .
\end{aligned}
$$

In each problem we can take this form for simplicity.
Also, recall that with state feedback $u=-K x+r$, the closed loop system is also in CCF:

$$
\begin{aligned}
& \dot{x}=\left(\begin{array}{ccc}
0 & 1 & 0 \\
0 & 0 & 1 \\
-a_{0}-k_{1} & -a_{1}-k_{2} & -a_{2}-k_{3}
\end{array}\right) x+\left(\begin{array}{l}
0 \\
0 \\
1
\end{array}\right) r \\
& y=\left(\begin{array}{lll}
b_{0} & b_{1} & b_{2}
\end{array}\right) x
\end{aligned}
$$

Problem 1

Consider the SISO model,

$$
Y(s)=\frac{s+1}{s^{2}+2 s+2} U(s)
$$

A second-order state-space model (without Matlab):

$$
\begin{aligned}
& \dot{x}=\left(\begin{array}{cc}
0 & 1 \\
-2 & -2
\end{array}\right) x+\binom{0}{1} u \\
& y=\left(\begin{array}{ll}
1 & 1) x
\end{array}\right.
\end{aligned}
$$

If we want to place the closed loop poles at -4 and -25 , then the new denominator would be $(s+4)(s+25)=s^{2}+29 s+100$. Therefore, $a_{0}+k_{1}=100 \Rightarrow k_{1}=100-2=98$ and
$a_{1}+k_{2}=29 \Rightarrow k_{2}=29-2=27$
Hence, $K=\left[\begin{array}{ll}98 & 27\end{array}\right] \Rightarrow u=-\left[\begin{array}{ll}98 & 27\end{array}\right] x+r$

Problem 2

Consider the satellite position model with delay,

$$
\begin{aligned}
G_{p}(s) & =\frac{1-\frac{1}{2} s}{1+\frac{1}{2} s} \cdot \frac{1}{s^{2}} \\
\Rightarrow\left(2 s^{2}+s^{3}\right) Y(s) & =(2-s) U(s)
\end{aligned}
$$

A third-order state-space model (without Matlab):

$$
\begin{aligned}
\dot{x} & =\left(\begin{array}{ccc}
0 & 1 & 0 \\
0 & 0 & 1 \\
0 & 0 & -2
\end{array}\right) x+\left(\begin{array}{l}
0 \\
0 \\
1
\end{array}\right) u \\
y & =\left(\begin{array}{lll}
2 & -1 & 0
\end{array}\right) x
\end{aligned}
$$

If we want to place the closed loop poles at $-4,-13$ and -25 , then the new denominator would be $(s+4)(s+13)(s+25)=s^{3}+42 s^{2}+477 s+1300$.

Follow the step that we did earlier in Problem 1, we will find that $a_{0}+k_{1}=1300 \Rightarrow k_{1}=1300-0=1300, a_{1}+k_{2}=477 \Rightarrow k_{2}=477-0=477$, and $a_{2}+k_{3}=42 \Rightarrow k_{3}=42-2=40$

Hence, $K=\left[\begin{array}{lll}1300 & 477 & 40\end{array}\right] \Rightarrow u=-\left[\begin{array}{lll}1300 & 477 & 40\end{array}\right] x+r$

Observers \mathcal{E} sensitivity:

Solutions

For an observer gain L, the observer poles are the eigenvalues of $A-L C$, which coincide with the eigenvalues of $A^{\prime}-C^{\prime} L^{\prime}$, where the "prime" denotes transpose. Consequently, to compute the observer gain in Matlab we apply the place command for $\left(A^{\prime}, C^{\prime}\right)$.

Problem 3

Return to the feedback system considered in Problem 1:
(a) Construct a stable observer to estimate x based on measurements of (u, y).

It is a rule of thumb to pick observer poles to be 2-5 times further than the controller poles
In Problem 1, the controller poles are at -4 and -25 . Suppose we want to place the observer poles at $\{-50-51\}$. By using a Matlab command

$$
\mathrm{L}=\operatorname{place}\left(\mathrm{A}^{\prime}, \mathrm{C}^{\prime},[-50-51]\right)
$$

where A^{\prime} and C^{\prime} are from Problem 1. We find that, $L=\binom{-2449}{2548}$
(b) Obtain a state-feedback compensator $u=-K \hat{x}+k_{r} r$, where K was obtained in your prior work, and k_{r} is chosen so that the DC gain Y / R is equal to unity.

To obtain k_{r}, recall that $\tilde{x}(t) \equiv 0$ if $\tilde{x}(0)=0$, so we can ignore the observer - The closed loop system transfer function disregards initial conditions. With full state feedback, the closed loop transfer function is $Y(s) / R(s)=C[I s-(A-B K)]^{-1} B k_{r}$. To set the DC gain to unity we need,

$$
\begin{aligned}
1 & =C[-(A-B K)]^{-1} B k_{r} \\
\Rightarrow k_{r} & =1 /\left(C[-(A-B K)]^{-1} B\right)=100
\end{aligned}
$$

(c) Obtain a step response using Matlab.

$$
\begin{aligned}
{\left[\begin{array}{c}
\dot{x} \\
\dot{x}
\end{array}\right] } & =\underbrace{\left[\begin{array}{c|c}
A-B K & B K \\
\hline 0 & A-L C
\end{array}\right]}_{A_{c l}}\left[\begin{array}{c}
x \\
\tilde{x}
\end{array}\right]+\underbrace{\left[\frac{k_{r} B}{0}\right]}_{B_{c l}} r \\
y & =\underbrace{[C \mid 0]}_{C_{c l}}\left[\begin{array}{c}
x \\
\tilde{x}
\end{array}\right]
\end{aligned}
$$

In Matlab:

Acl =

0	1	0	0
-100	-29	98	27
0	0	2449	2450
0	0	-2550	-2550

$\mathrm{Bcl}=$

0
100
0
0

Ccl =
$\begin{array}{llll}1 & 1 & 0 & 0\end{array}$

Overshoot is as expected due to the LHP zero.

Problem 4

Return to the feedback system considered in Problem 2:
(a) Construct a stable observer, and using this obtain a compensator of the form $U=-G_{c} Y+$ $G_{r} R$.
Suppose we want to place the observer poles at $\{-50-51-52\}$. By using a Matlab, we found that

```
L2 =
    9301
    18450
    29400
```

The feedback law $u=-K \hat{x}+k_{r} r$ can be expressed in the frequency domain (subject to zero initial conditions) by $U=-G_{c} Y+G_{r} R$, with

$$
\begin{aligned}
G_{c}(s) & =K[I s-(A-B K-L C)]^{-1} L \\
G_{r}(s) & =I-K[I s-(A-B K-L C)]^{-1} B
\end{aligned}
$$

We can obtain $G_{c}(s)$ from Matlab:

```
Acl2 =
    1.0e+004 *
        -1.8601 0.9302 0
        -3.6900 1.8450 0.0001
        -6.0100 2.8923 -0.0042
G_c(s) =
Transfer function:
2.207e007 s^2 + 7.979e007 s + 8.619e007
s^3 + 193 s^2 + 1.432e004 s + 2.257e007
```

The resulting transfer function G_{c} has zeros at $-1.8079 \pm 0.7983 j$, and poles at

```
1.0e+002 *
-3.4306
    0.7503 + 2.4530i
    0.7503 - 2.4530i
```

Note that introduces two poles in the RHP.
(b) Obtain a Nyquist plot for $G_{c} G_{p}$ using Matlab, and estimate the gain and phase margins.

We have $P=2$ (from the compensator), and we do see that $N=-2$, given $Z=0$. The system is stable, but there is virtually no gain or phase margin.

