UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN

Department of Electrical and Computer Engineering

ECE 486: Control Systems

Homework 9 Solutions

Modeling & full-state feedback:

Solutions

Recall the Controllable Canonical Form: Starting with

$$(s^{3} + a_{2}s^{2} + a_{1}s + a_{0})Y(s) = (b_{0} + b_{1}s + b_{2}s^{2})U(s)$$

we obtain the state space model,

$$\dot{x} = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ -a_0 & -a_1 & -a_2 \end{pmatrix} x + \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} u$$
$$y = \begin{pmatrix} b_0 & b_1 & b_2 \end{pmatrix} x + (0)u.$$

In each problem we can take this form for simplicity.

Also, recall that with state feedback u = -Kx + r, the closed loop system is also in CCF:

$$\dot{x} = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ -a_0 - k_1 & -a_1 - k_2 & -a_2 - k_3 \end{pmatrix} x + \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} r$$
$$y = \begin{pmatrix} b_0 & b_1 & b_2 \end{pmatrix} x$$

Problem 1

Consider the SISO model,

$$Y(s) = \frac{s+1}{s^2 + 2s + 2}U(s)$$

A second-order state-space model (without Matlab):

$$\dot{x} = \begin{pmatrix} 0 & 1 \\ -2 & -2 \end{pmatrix} x + \begin{pmatrix} 0 \\ 1 \end{pmatrix} u$$
$$y = (1 \quad 1)x$$

If we want to place the closed loop poles at -4 and -25, then the new denominator would be $(s + 4)(s + 25) = s^2 + 29s + 100$. Therefore, $a_0 + k_1 = 100 \Rightarrow k_1 = 100 - 2 = 98$ and

 $a_1 + k_2 = 29 \Rightarrow k_2 = 29 - 2 = 27$ Hence, $K = [98 \quad 27] \Rightarrow u = -[98 \quad 27]x + r$

Problem 2

Consider the satellite position model with delay,

$$\begin{split} G_p(s) &= \frac{1-\frac{1}{2}s}{1+\frac{1}{2}s}\cdot\frac{1}{s^2}\\ \Rightarrow (2s^2+s^3)Y(s) &= (2-s)U(s) \end{split}$$

A third-order state-space model (without Matlab):

$$\dot{x} = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & -2 \end{pmatrix} x + \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} u$$
$$y = (2 -1 \ 0)x$$

If we want to place the closed loop poles at -4, -13 and -25, then the new denominator would be $(s+4)(s+13)(s+25) = s^3 + 42s^2 + 477s + 1300$.

Follow the step that we did earlier in Problem 1, we will find that $a_0 + k_1 = 1300 \Rightarrow k_1 = 1300 - 0 = 1300$, $a_1 + k_2 = 477 \Rightarrow k_2 = 477 - 0 = 477$, and $a_2 + k_3 = 42 \Rightarrow k_3 = 42 - 2 = 40$

Hence, $K = \begin{bmatrix} 1300 & 477 & 40 \end{bmatrix} \Rightarrow u = -\begin{bmatrix} 1300 & 477 & 40 \end{bmatrix} x + r$

Observers & sensitivity:

Solutions

For an observer gain L, the observer poles are the eigenvalues of A-LC, which coincide with the eigenvalues of A' - C'L', where the "prime" denotes transpose. Consequently, to compute the observer gain in Matlab we apply the **place** command for (A', C').

Problem 3

Return to the feedback system considered in Problem 1:

(a) Construct a stable observer to estimate x based on measurements of (u, y).

It is a rule of thumb to pick observer poles to be 2 - 5 times further than the controller poles

In Problem 1, the controller poles are at -4 and -25. Suppose we want to place the observer poles at {-50 -51}. By using a Matlab command

$$\mathtt{L} = \mathtt{place}(\mathtt{A}', \mathtt{C}', [-50-51])$$

where A' and C' are from Problem 1. We find that, $L = \begin{pmatrix} -2449 \\ 2548 \end{pmatrix}$

(b) Obtain a state-feedback compensator $u = -K\hat{x} + k_r r$, where K was obtained in your prior work, and k_r is chosen so that the DC gain Y/R is equal to unity.

To obtain k_r , recall that $\tilde{x}(t) \equiv 0$ if $\tilde{x}(0) = 0$, so we can ignore the observer – The closed loop system transfer function disregards initial conditions. With full state feedback, the closed loop transfer function is $Y(s)/R(s) = C[Is - (A - BK)]^{-1}Bk_r$. To set the DC gain to unity we need,

$$1 = C[-(A - BK)]^{-1}Bk_r \Rightarrow k_r = 1/(C[-(A - BK)]^{-1}B) = 100$$

(c) Obtain a step response using Matlab.

$$\begin{bmatrix} \dot{x} \\ \dot{\tilde{x}} \end{bmatrix} = \underbrace{\left[\begin{array}{c|c} A - BK & BK \\ \hline 0 & A - LC \end{array} \right]}_{A_{cl}} \begin{bmatrix} x \\ \tilde{x} \end{bmatrix} + \underbrace{\left[\begin{array}{c} k_r B \\ \hline 0 \end{bmatrix}}_{B_{cl}} r$$

$$y = \underbrace{\left[C \mid 0 \right]}_{C_{cl}} \begin{bmatrix} x \\ \tilde{x} \end{bmatrix}$$

In Matlab:

Acl =

0 -100	1 -29	0 98	0 27
0	0	2449	2450
0	0	-2550	-2550
Bcl =			
0			
100			
0			
0			

Ccl =

1 1 0 0

Overshoot is as expected due to the LHP zero.

Problem 4

Return to the feedback system considered in Problem 2:

(a) Construct a stable observer, and using this obtain a compensator of the form $U = -G_c Y + G_r R$.

Suppose we want to place the observer poles at $\{-50, -51, -52\}$. By using a Matlab, we found that

L2 = 9301 18450 29400

The feedback law $u = -K\hat{x} + k_r r$ can be expressed in the frequency domain (subject to zero initial conditions) by $U = -G_c Y + G_r R$, with

$$G_c(s) = K[Is - (A - BK - LC)]^{-1}L$$

 $G_r(s) = I - K[Is - (A - BK - LC)]^{-1}B$

We can obtain $G_c(s)$ from Matlab:

Ac12 =

```
1.0e+004 *
```

-1.8601	0.9302	0				
-3.6900	1.8450	0.0001				
-6.0100	2.8923	-0.0042				
$G_c(s) =$						
Transfer function:						
2.207e007 s^2	+ 7.979e	007 s + 8.6	319e007			
s^3 + 193 s^2	+ 1.432e	004 s + 2.2	257e007			

The resulting transfer function G_c has zeros at $-1.8079 \pm 0.7983j$, and poles at

1.0e+002 * -3.4306 0.7503 + 2.4530i 0.7503 - 2.4530i

Note that introduces two poles in the RHP.

(b) Obtain a Nyquist plot for G_cG_p using Matlab, and estimate the gain and phase margins.

We have P = 2 (from the compensator), and we do see that N = -2, given Z = 0. The system is stable, but there is virtually no gain or phase margin.

