UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN

Department of Electrical and Computer Engineering
ECE 486: Control Systems
Homework 8 Solutions

Solution 1

(i) Denote $M_{i j}$ to be the $i j$-th element in matrix M.

$$
(A B)_{i j}^{T}=(A B)_{j i}=\sum_{k=1}^{n} A_{j k} B_{k i}=\sum_{k=1}^{n} B_{i k}^{T} A_{k j}^{T}=\left(B^{T} A^{T}\right)_{i j}
$$

Hence $(A B)^{T}=B^{T} A^{T}$
(ii) $\mathrm{By}(\mathrm{i})$,

$$
(A B C)^{T}=((A B) C)^{T}=C^{T}(A B)^{T}=C^{T}\left(A^{T} B^{T}\right)=C^{T} B^{T} A^{T}
$$

(iii) Denote $B:=A^{-1}$, i.e.,

$$
\begin{gathered}
A B=I \\
\Rightarrow I=(A B)^{T}=B^{T} A^{T} \Rightarrow B^{T}=\left(A^{T}\right)^{-1}
\end{gathered}
$$

Therefore $\left(A^{-1}\right)^{T}=\left(A^{T}\right)^{-1}$
(iv)

$$
\begin{aligned}
\left(I-T A T^{-1}\right)\left(T(I-A)^{-1} T^{-1}\right) & =\left(T I T^{-1}-T A T^{-1}\right)\left(T(I-A)^{-1} T^{-1}\right) \\
& =\left(T(I-A) T^{-1}\right)\left(T(I-A)^{-1} T^{-1}\right) \\
& =T(I-A)(I-A)^{-1} T^{-1} \\
& =T T^{-1} \\
& =I
\end{aligned}
$$

Hence $\left(I-T A T^{-1}\right)^{T}=T(I-A)^{-1} T^{-1}$
(v) It is trivially true for $k=0$. Suppose it is true for $k=n$. Then

$$
\left(T A T^{-1}\right)^{k+1}=\left(T A T^{-1}\right)^{k}\left(T A T^{-1}\right)=\left(T A^{k} T^{-1}\right)\left(T A T^{-1}\right)=T A^{k+1} T^{-1}
$$

By induction, it is true for all $k \in \mathbb{N}_{\geq 0}$

Solution 2

(i)

$$
p(s)=\operatorname{det}(s I-A)=\left|\begin{array}{ccc}
s & 1 & -2 / 3 \\
1 & s+2 & -1 \\
0 & 3 & s-1
\end{array}\right|=s^{3}+s^{2}-1
$$

(ii)

$$
G(s)=C(I s-A)^{-1} B=\left(\begin{array}{lll}
0 & 1 & 0
\end{array}\right)\left(\begin{array}{ccc}
s & 1 & -2 / 3 \\
1 & s+2 & -1 \\
0 & 3 & s-1
\end{array}\right)^{-1}\left(\begin{array}{l}
1 \\
2 \\
3
\end{array}\right)=\frac{2 s^{2}-1}{s^{3}+s^{2}-1}
$$

(iii) By formula, the CCF realization will be:

$$
\dot{x}=\left(\begin{array}{ccc}
0 & 1 & 0 \\
0 & 0 & 1 \\
1 & 0 & -1
\end{array}\right) x+\left(\begin{array}{l}
0 \\
0 \\
1
\end{array}\right) u, \quad y=\left(\begin{array}{lll}
-1 & 0 & 2
\end{array}\right) x
$$

Solution 3

(i)

$$
\mathcal{C}=(b \mid A b)=\left(\begin{array}{cc}
1 & 1 \\
0 & -2
\end{array}\right) \Rightarrow \operatorname{det}(\mathcal{C})=-2 \neq 0
$$

Hence the system is controllable.
(ii)

$$
\mathcal{C}=\left(b|A b| A^{2} b\right)=\left(\begin{array}{ccc}
0 & 0 & 0 \\
1 & 1 & -2 \\
0 & -1 & 1
\end{array}\right)
$$

As the first row of \mathcal{C} is 0 , it is not full rank, so the system is not controllable.

Solution 4

(i)

$$
\begin{aligned}
& \dot{\bar{v}}_{1}=\dot{v}_{1}=-\left(v_{1}-v_{2}\right)+f_{1}=\bar{v}_{2}+f_{1} \\
& \dot{\bar{v}}_{2}=\dot{v}_{2}-\dot{v}_{1}=-\left(v_{2}-v_{1}\right)+f_{2}+\left(v_{1}-v_{2}\right)-f_{1}=-2 \bar{v}_{2}+f_{2}-f_{1}
\end{aligned}
$$

(ii) The original system is

$$
\binom{\dot{v}_{1}}{\dot{v}_{2}}=\left(\begin{array}{cc}
-1 & 1 \\
1 & -1
\end{array}\right)\binom{v_{1}}{v_{2}}+\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)\binom{f_{1}}{f_{2}}
$$

The new system is already shown in (i):

$$
\binom{\dot{v}_{1}}{\dot{v}_{2}}=\left(\begin{array}{cc}
0 & 1 \\
0 & -2
\end{array}\right)\binom{\bar{v}_{1}}{\bar{v}_{2}}+\left(\begin{array}{cc}
1 & 0 \\
-1 & 1
\end{array}\right)\binom{f_{1}}{f_{2}}
$$

T is extracted from the given relation:

$$
\binom{\bar{v}_{1}}{\bar{v}_{2}}=\left(\begin{array}{cc}
1 & 0 \\
-1 & 1
\end{array}\right)\binom{v_{1}}{v_{2}} \Rightarrow T=\left(\begin{array}{cc}
1 & 0 \\
-1 & 1
\end{array}\right)
$$

It can be computed that $T^{-1}=\left(\begin{array}{ll}1 & 0 \\ 1 & 1\end{array}\right)$. Therefore easy to check that

$$
\begin{gathered}
T A T^{-1}=\left(\begin{array}{cc}
1 & 0 \\
-1 & 1
\end{array}\right)\left(\begin{array}{cc}
-1 & 1 \\
1 & -1
\end{array}\right)\left(\begin{array}{ll}
1 & 0 \\
1 & 1
\end{array}\right)=\left(\begin{array}{cc}
0 & 1 \\
0 & -2
\end{array}\right)=\bar{A}, \\
T B=\left(\begin{array}{cc}
1 & 0 \\
-1 & 1
\end{array}\right)\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)=\left(\begin{array}{cc}
1 & 0 \\
-1 & 1
\end{array}\right)=\bar{B}
\end{gathered}
$$

