UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN

Department of Electrical and Computer Engineering

ECE 486: CONTROL SYSTEMS

Homework 4 Solutions

Solution 1

(i)

No change of sign in the first column \Rightarrow No RHP roots.

(ii) There are negative coefficients \Rightarrow RHP roots exist.

(iii) There are negative coefficients \Rightarrow RHP roots exist.

(iv)

No change of sign in the first column \Rightarrow No RHP roots.

Solution 2

The closed loop transfer function is:

$$G_{cl} = \frac{KG}{1 + KG} = \frac{\frac{K}{s^3 + 3s^2 + s + 1}}{1 + \frac{K}{s^3 + 3s^2 + s + 1}} = \frac{K}{s^3 + 3s^2 + s + (K + 1)}$$

Construct the Routh-Hurwitz array:

$$\begin{array}{ccccc} s^3 & 1 & 1 \\ s^2 & 3 & (K+1) \\ s^1 & \frac{3-(K+1)}{3} \\ s^0 & K+1 \end{array}$$

Hence for the system to be stable, we need:

$$\frac{3 - (K+1)}{3} > 0 \\ K+1 > 0 \Rightarrow -1 < K < 2$$

In addition, the sytem is unstable when $K\geq 2$

Solution 3

(i) Constant reference, say unit step: $R(s) = \frac{1}{s}$. Assume there is no disturbance, i.e., W = 0. Then

$$Y = KGR = \frac{K}{s(s+p)}$$

Using Final Value Theorem,

$$y(\infty) = r(\infty) = 1 \Rightarrow 1 = \lim_{s \to 0} Ys = \lim_{s \to 0} \frac{K}{s+p} = \frac{K}{p} \Rightarrow K = p$$

(2) Constant disturbance, say unit step: $W(s) = \frac{1}{s}$. Assume there is no reference, i.e., R = 0. Then

$$\frac{Y}{W} = CKG = \frac{Cp}{s+p}$$

which means the DC gain from W to Y is C. Using Final Value Theorem,

$$y(\infty) = \lim_{s \to 0} Ys = \lim_{s \to 0} \frac{Cp}{s+p} = C \neq 0$$

Therefore the system is unable to reject constant disturbances.

Solution 4

(i) Recall
$$T_{r \to y} = \frac{KP}{1+KP}$$
. When $n > 0$,

$$0 \neq c = \lim_{s \to 0} \frac{1 - T_{r \to y}(s)}{s^n} = \lim_{s \to 0} \frac{\frac{1}{1 + KP}}{s^n} = \lim_{s \to 0} \frac{1}{s^n + s^n KP} = \lim_{s \to 0} \frac{1}{s^n K(s)P(s)}$$

$$\Leftrightarrow \lim_{s \to 0} s^n K(s)P(s) = \frac{1}{c} \neq 0$$

When n = 0,

$$c = \lim_{s \to 0} (1 - T_{r \to y}(s)) = \lim_{s \to 0} \frac{1}{1 + KP} \Rightarrow K(0)P(0) = \frac{1}{c} - 1 < \infty$$

Also notice that $K(0)P(0) \neq 0$, therefore

$$\lim_{s \to 0} s^n K(s) P(s) = \lim_{s \to 0} nK(s) P(s) = \frac{1}{c} - 1 \neq 0$$

Hence the system has type n.

(ii) Notice that signal from W to Y can be viewed as with open loop P and feedback K. Hence

$$T_{w \to y} = \frac{P}{1 + KP}$$

(iii) Without loss of generality, we can always assume that $T_{w \to y}(s) = s^{k'} \frac{A(s)}{B(s)}$ with $k' \in \mathbb{N}_{\geq 0}$ and A, B polynomials with real coefficients such that $A(0) \neq 0, B(0) \neq 0$. Notice that

$$\lim_{s \to 0} \frac{T_{w \to y}(s)}{s^k} = \lim_{s \to 0} s^{(k'-k)} \frac{A(s)}{B(s)} = \frac{A(0)}{B(0)} \lim_{s \to 0} s^{(k'-k)}$$

If k' > k,

$$\lim_{s \to 0} \frac{T_{w \to y}(s)}{s^k} = 0$$

If k' < k, $\lim_{s\to 0} \frac{T_{w\to y}(s)}{s^k}$ is not defined. Hence we must have k' = k. In other words, $T_{w\to y}$ has type k with respect to disturbance inputs if it has a zero of order k at the origin.

(iv) Let w(t) be a degree of m polynomial disturbances. Then $W(s) = \frac{W_0}{s^{m+1}}$. By Final Value Theorem,

$$y(\infty) = \lim_{s \to 0} T_{w \to y}(s) W(s) s = \lim_{s \to 0} s^{k-m} \frac{W_0 A(s)}{B(s)} = \begin{cases} 0 & \text{if } m < k \\ \frac{W_0 A(0)}{B(0)} & \text{if } m = k \\ \text{not defined} & \text{if } m > k \end{cases}$$

Hence the system of type k with respect to disturbances can achieve perfect steady-state rejection of polynomial disturbances of degree m < k, but not when mk.

(v) Recall
$$T_{w \to y} = \frac{P}{1+KP}$$
.

(a)

$$T_{\rm P} = \frac{P}{1 + K_P P} = \frac{\frac{1}{s^2 + 1}}{1 + \frac{K_P}{s^2 + 1}} = \frac{1}{s^2 + (K_P + 1)}$$

no zero at origin, hence type 0.

$$T_{\rm PD} = \frac{P}{1 + (K_P + K_D s)P} = \frac{\frac{1}{s^2 + 1}}{1 + \frac{(K_P + K_D s)}{s^2 + 1}} = \frac{1}{s^2 + K_D s + (K_P + 1)}$$

no zero at origin, hence type 0.

$$T_{\text{PID}} = \frac{P}{1 + (K_P + K_D s + \frac{K_I}{s})P} = \frac{\frac{1}{s^2 + 1}}{1 + \frac{(K_P s + K_D s^2 + K_i)}{s(s^2 + 1)}} = \frac{s}{s^3 + K_D s^2 + (K_P + 1)s + K_I}$$

a *zero* at origin, hence type 1.