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Problem 1

(i) f1(t) = sin(2t) =
e2jt − e−2jt

2j

U1 = L{sin(2t)} =

∫ ∞
0

(
e2jt − e−2jt

2j

)
e−st dt

=
1

2j

∫ ∞
0

(e−(s−2j)t − e−(s+2j)t) dt

=
1

2j

(
−e
−(s−2j)t

s− 2j

∣∣∣∣∣
∞

0

+
e−(s+2j)t

s+ 2j

∣∣∣∣∣
∞

0

)

=
1

2j

(
4j

s2 + 4

)
=

2

s2 + 4

f2(t) = e−3t

F2 = L{e−3t} =

∫ ∞
0

e−3te−st dt

=

∫ ∞
0

e−(s+3)t) dt

= −e
−(s+3)t

s+ 3

∣∣∣∣∣
∞

0

=
1

s+ 3

f3(t) = sin(2t) + e−3t

By the Linearity of Laplace Transform,

F3 = L{sin(2t) + e−3t} = L{sin(2t)}+ L{e−3t}

=
2

s2 + 4
+

1

s+ 3



(ii) The Final Value Theorem : If all poles of sY (s) are in the left half of the s-plane, then

lim
t→∞

y(t) = lim
s→0

sY (s)

lim
t→∞

f1(t) = lim
s→0

sF1(s) = lim
s→0

2s

s2 + 4
= 0 (Invalid)

lim
t→∞

f2(t) = lim
s→0

sF2(s) = lim
s→0

s

s+ 3
= 0 (Valid)

lim
t→∞

f3(t) = lim
s→0

sF3(s) = lim
s→0

(
2s

s2 + 4
+

s

s+ 3

)
= 0 (Invalid)

Problem 2

Compute by hand the step responses of

(i) H1(s) =
2

s+ 4

Y1(s) =
1

s
H1(s) =

2

s(s+ 4)
=
C1

s
+

C2

s+ 4

C1 =
2

s+ 4

∣∣∣∣
s=0

=
1

2
, C2 =

2

s

∣∣∣∣
s=−4

= −1

2

Hence,

Y1(s) =
1

2s
− 1

2(s+ 4)

Compute y1(t) by Reverse Laplace Transform

L−1{Y1(s)} = y1(t) =
1

2
− 1

2
e−4t

Steady-state response: limt→∞ y1(t) = 1
2

DC Gain:

sY1(s) = sH1(s)
1

s

∣∣∣∣
s=0

=
1

2

Therefore, The steady-state response to the unit step function is equal to the DC gain.

(ii) H2(s) =
2

s− 4

Y2(s) =
1

s
H2(s) =

2

s(s− 4)
=
C1

s
+

C2

s− 4

2



C1 =
2

s− 4

∣∣∣∣
s=0

= −1

2
, C2 =

2

s

∣∣∣∣
s=4

=
1

2

Hence,

Y2(s) = − 1

2s
+

1

2(s− 4)

Compute y2(t) by Reverse Laplace Transform

L−1{Y2(s)} = y2(t) = −1

2
+

1

2
e4t

Steady-state response: limt→∞ y1(t) =∞
Since there is a pole in the RHP, therefore, FVT is invalid and DC gain cannot be
determined.

Problem 3

H1(s) =
1

s2 − s+ 2
, H2(s) =

s− 3

s2 + 5s+ 6

(i) Compute DC Gain
(a) FVT does not apply for the first case because the poles ofH1(s) are not in an open LHP

(b) Poles of H2(s) are both in open LHP, hence, FVT applies.

DC Gain of H2(s) = sH2(s)
1

s

∣∣∣∣
s=0

= −3

6
= −1

2

(ii) Step responses
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(iii) For the first case, FVT is invalid because there exists a pole in the RHP causing the
system to be unstable. The step response agrees because we can see from the plot that
the step response does not converge.

As for the second system, we can see from the plot that the step response converges
to −0.5, which agrees with the result from part (i).

Problem 4

(i) Rearrange the equation of motion:

θ̈ = −γ
J
θ̇ +

mgl

J
sin θ +

l

J
F cos θ.

Take x1 = θ, x2 = θ̇, u = F, y = x1 to get the nonlinear state-space model

ẋ1 = x2

ẋ2 = −γ
J
x2 +

mgl

J
sinx1 +

l

J
u cosx1

y = x1

which corresponds to f(x1, x2, u) =

(
f1(x1, x2, u)
f2(x1, x2, u)

)
with

f1(x1, x2, u) = x2, f2(x1, x2, u) = −γ
J
x2 +

mgl

J
sinx1 +

l

J
u cosx1.

(ii) To check the equilibrium condition, we substitute the zero-state/zero-input point into the
state-space equation:

f1(0, 0, 0) = x2
∣∣
x2=0

= 0

f2(0, 0, 0) = −γ
J
x2 +

mgl

J
sinx1 +

l

J
u cosx1

∣∣
x1=x2=u=0

= 0

To obtain the linearized model, we take the Jacobians of f(x1, x2, u) with respect to x1, x2
and with respect to u and evaluate them at x1 = x2 = u = 0:(

ẋ1
ẋ2

)
=

(
∂f1
∂x1

∂f1
∂x2

∂f2
∂x1

∂f2
∂x2

)∣∣∣∣∣
x1=x2=u=0

(
x1
x2

)
+

(∂f1
∂u
∂f2
∂u

) ∣∣∣∣∣
x1=x2=u=0

u

=

(
0 1
mgl
J − γ

J

)(
x1
x2

)
+

(
0
l
J

)
u.

The output is given by y =
(
1 0

)(x1
x2

)
.
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(iii) The linearized state-space model from part (ii) is:

ẋ1 = x2

ẋ2 =
mgl

J
x1 −

γ

J
x2 +

l

J
u

y = x1

We take the Laplace transform (assuming zero i.c.’s):

sX1(s) = X2(s)

sX2(s) =
mgl

J
X1(s)−

γ

J
X2(s) +

l

J
U(s)

Y (s) = X1(s)

Substituting sX1 for X2 in the second equation and rearranging, we have(
s2 +

γ

J
s− mgl

J

)
X1(s) =

l

J
U(s).

Since Y (s) = X1(s), the transfer function is given by

H(s) =
Y (s)

U(s)

=
l
J

s2 + γ
J s−

mgl
J

=
l

Js2 + γs−mgl

Problem 5

Observer Canonical Form:(
ẋ1
ẋ2

)
=

(
0 −a0
1 −a1

)(
x1
x2

)
+

(
b0
b1

)
u, y =

(
0 1

)(x1
x2

)
.

The differential equations:
ẋ1 = −a0x2 + b0u, y = x2

ẋ2 = x1 − a1x2 + b1u

In s-domain:
sX1 = −a0X2 + b0U, Y = X2

sX2 = X1 − a1X2 + b1U
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Multiply s to the sX2 equation:

s2X2 = sX1 − a1sX2 + b1sU

Substitute sX1,

s2X2 = −a0X2 + b0U − a1sX2 + b1sU

(s2 + a1s+ a0)X2 = (b0 + b1s)U

Since Y = X2, hence
(s2 + a1s+ a0)Y = (b0 + b1s)U

Transfer function, H(s) =
Y (s)

U(s)
=

b1s+ b0
s2 + a1s+ a0

Controller Canonical Form(
ẋ1
ẋ2

)
=

(
0 1
−a0 −a1

)(
x1
x2

)
+

(
0
1

)
u, y =

(
b0 b1

)(x1
x2

)
.

The differential equations:

ẋ1 = x2 y = b0x1 + b1x2

ẋ2 = −a0x1 − a1x2 + u

In s-domain:
sX1 = X2 Y = b0X1 + b1X2

sX2 = −a0X1 − a1X2 + U

Substitute sX1 = X2 in the Y equation,

Y = b0X1 + b1sX1

∴
Y

X1
= b0 + b1s

Substitute sX1 = X2 in the sX2 equation

s2X1 = −a0X1 − a1sX1 + U

∴
X1

U
=

1

s2 + a1s+ a0

Therefore,

Y

X1
· X1

U
= (b0 + b1s) ·

1

s2 + a1s+ a0
Y

U
=

b1s+ b0
s2 + a1s+ a0
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Transfer function, H(s) =
Y (s)

U(s)
=

b1s+ b0
s2 + a1s+ a0

This shows that the same transfer function can be realized by several different state-space
models.
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