UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN

Department of Electrical and Computer Engineering
ECE 486: Control Systems

Homework 2 Solutions

Spring 2024

Problem 1

(i) $f_{1}(t)=\sin (2 t)=\frac{e^{2 j t}-e^{-2 j t}}{2 j}$

$$
\begin{aligned}
U_{1} & =\mathcal{L}\{\sin (2 t)\}=\int_{0}^{\infty}\left(\frac{e^{2 j t}-e^{-2 j t}}{2 j}\right) e^{-s t} d t \\
& =\frac{1}{2 j} \int_{0}^{\infty}\left(e^{-(s-2 j) t}-e^{-(s+2 j) t}\right) d t \\
& =\frac{1}{2 j}\left(-\left.\frac{e^{-(s-2 j) t}}{s-2 j}\right|_{0} ^{\infty}+\left.\frac{e^{-(s+2 j) t}}{s+2 j}\right|_{0} ^{\infty}\right) \\
& =\frac{1}{2 j}\left(\frac{4 j}{s^{2}+4}\right) \\
& =\frac{2}{s^{2}+4}
\end{aligned}
$$

$$
f_{2}(t)=e^{-3 t}
$$

$$
\begin{aligned}
F_{2} & =\mathcal{L}\left\{e^{-3 t}\right\}=\int_{0}^{\infty} e^{-3 t} e^{-s t} d t \\
& \left.=\int_{0}^{\infty} e^{-(s+3) t}\right) d t \\
& =-\left.\frac{e^{-(s+3) t}}{s+3}\right|_{0} ^{\infty} \\
& =\frac{1}{s+3}
\end{aligned}
$$

$f_{3}(t)=\sin (2 t)+e^{-3 t}$
By the Linearity of Laplace Transform,

$$
\begin{aligned}
F_{3} & =\mathcal{L}\left\{\sin (2 t)+e^{-3 t}\right\}=\mathcal{L}\{\sin (2 t)\}+\mathcal{L}\left\{e^{-3 t}\right\} \\
& =\frac{2}{s^{2}+4}+\frac{1}{s+3}
\end{aligned}
$$

(ii) The Final Value Theorem : If all poles of $s Y(s)$ are in the left half of the s-plane, then

$$
\begin{gathered}
\lim _{t \rightarrow \infty} y(t)=\lim _{s \rightarrow 0} s Y(s) \\
\lim _{t \rightarrow \infty} f_{1}(t)=\lim _{s \rightarrow 0} s F_{1}(s)=\lim _{s \rightarrow 0} \frac{2 s}{s^{2}+4}=0 \text { (Invalid) } \\
\lim _{t \rightarrow \infty} f_{2}(t)=\lim _{s \rightarrow 0} s F_{2}(s)=\lim _{s \rightarrow 0} \frac{s}{s+3}=0 \text { (Valid) } \\
\lim _{t \rightarrow \infty} f_{3}(t)=\lim _{s \rightarrow 0} s F_{3}(s)=\lim _{s \rightarrow 0}\left(\frac{2 s}{s^{2}+4}+\frac{s}{s+3}\right)=0 \text { (Invalid) }
\end{gathered}
$$

Problem 2

Compute by hand the step responses of
(i) $H_{1}(s)=\frac{2}{s+4}$

$$
\begin{gathered}
Y_{1}(s)=\frac{1}{s} H_{1}(s)=\frac{2}{s(s+4)}=\frac{C_{1}}{s}+\frac{C_{2}}{s+4} \\
C_{1}=\left.\frac{2}{s+4}\right|_{s=0}=\frac{1}{2}, \quad C_{2}=\left.\frac{2}{s}\right|_{s=-4}=-\frac{1}{2}
\end{gathered}
$$

Hence,

$$
Y_{1}(s)=\frac{1}{2 s}-\frac{1}{2(s+4)}
$$

Compute $y_{1}(t)$ by Reverse Laplace Transform

$$
\mathcal{L}^{-1}\left\{Y_{1}(s)\right\}=y_{1}(t)=\frac{1}{2}-\frac{1}{2} e^{-4 t}
$$

Steady-state response: $\lim _{t \rightarrow \infty} y_{1}(t)=\frac{1}{2}$
DC Gain:

$$
s Y_{1}(s)=\left.s H_{1}(s) \frac{1}{s}\right|_{s=0}=\frac{1}{2}
$$

Therefore, The steady-state response to the unit step function is equal to the DC gain.
(ii) $H_{2}(s)=\frac{2}{s-4}$

$$
Y_{2}(s)=\frac{1}{s} H_{2}(s)=\frac{2}{s(s-4)}=\frac{C_{1}}{s}+\frac{C_{2}}{s-4}
$$

$$
C_{1}=\left.\frac{2}{s-4}\right|_{s=0}=-\frac{1}{2}, \quad C_{2}=\left.\frac{2}{s}\right|_{s=4}=\frac{1}{2}
$$

Hence,

$$
Y_{2}(s)=-\frac{1}{2 s}+\frac{1}{2(s-4)}
$$

Compute $y_{2}(t)$ by Reverse Laplace Transform

$$
\mathcal{L}^{-1}\left\{Y_{2}(s)\right\}=y_{2}(t)=-\frac{1}{2}+\frac{1}{2} e^{4 t}
$$

Steady-state response: $\lim _{t \rightarrow \infty} y_{1}(t)=\infty$
Since there is a pole in the RHP, therefore, FVT is invalid and DC gain cannot be determined.

Problem 3

$$
H_{1}(s)=\frac{1}{s^{2}-s+2}, \quad H_{2}(s)=\frac{s-3}{s^{2}+5 s+6}
$$

(i) Compute DC Gain
(a) FVT does not apply for the first case because the poles of $H_{1}(s)$ are not in an open LHP
(b) Poles of $H_{2}(s)$ are both in open LHP, hence, FVT applies.

DC Gain of $H_{2}(s)=\left.s H_{2}(s) \frac{1}{s}\right|_{s=0}=-\frac{3}{6}=-\frac{1}{2}$
(ii) Step responses

(iii) For the first case, FVT is invalid because there exists a pole in the RHP causing the system to be unstable. The step response agrees because we can see from the plot that the step response does not converge.

As for the second system, we can see from the plot that the step response converges to -0.5 , which agrees with the result from part (i).

Problem 4

(i) Rearrange the equation of motion:

$$
\ddot{\theta}=-\frac{\gamma}{J} \dot{\theta}+\frac{m g l}{J} \sin \theta+\frac{l}{J} F \cos \theta .
$$

Take $x_{1}=\theta, x_{2}=\dot{\theta}, u=F, y=x_{1}$ to get the nonlinear state-space model

$$
\begin{aligned}
\dot{x}_{1} & =x_{2} \\
\dot{x}_{2} & =-\frac{\gamma}{J} x_{2}+\frac{m g l}{J} \sin x_{1}+\frac{l}{J} u \cos x_{1} \\
y & =x_{1}
\end{aligned}
$$

which corresponds to $f\left(x_{1}, x_{2}, u\right)=\binom{f_{1}\left(x_{1}, x_{2}, u\right)}{f_{2}\left(x_{1}, x_{2}, u\right)}$ with

$$
f_{1}\left(x_{1}, x_{2}, u\right)=x_{2}, \quad f_{2}\left(x_{1}, x_{2}, u\right)=-\frac{\gamma}{J} x_{2}+\frac{m g l}{J} \sin x_{1}+\frac{l}{J} u \cos x_{1} .
$$

(ii) To check the equilibrium condition, we substitute the zero-state/zero-input point into the state-space equation:

$$
\begin{aligned}
& f_{1}(0,0,0)=\left.x_{2}\right|_{x_{2}=0}=0 \\
& f_{2}(0,0,0)=-\frac{\gamma}{J} x_{2}+\frac{m g l}{J} \sin x_{1}+\left.\frac{l}{J} u \cos x_{1}\right|_{x_{1}=x_{2}=u=0}=0
\end{aligned}
$$

To obtain the linearized model, we take the Jacobians of $f\left(x_{1}, x_{2}, u\right)$ with respect to x_{1}, x_{2} and with respect to u and evaluate them at $x_{1}=x_{2}=u=0$:

$$
\begin{aligned}
\binom{\dot{x}_{1}}{\dot{x}_{2}} & =\left.\left(\begin{array}{ll}
\frac{\partial f_{1}}{\partial x_{1}} & \frac{\partial f_{1}}{\partial x_{2}} \\
\frac{\partial f_{2}}{\partial x_{1}} & \frac{\partial f_{2}}{\partial x_{2}}
\end{array}\right)\right|_{x_{1}=x_{2}=u=0}\binom{x_{1}}{x_{2}}+\left.\binom{\frac{\partial f_{1}}{\partial u}}{\frac{\partial f_{2}}{\partial u}}\right|_{x_{1}=x_{2}=u=0} u \\
& =\left(\begin{array}{cc}
0 & 1 \\
\frac{m g l}{J} & -\frac{\gamma}{J}
\end{array}\right)\binom{x_{1}}{x_{2}}+\binom{0}{\frac{l}{J}} u .
\end{aligned}
$$

The output is given by $y=\left(\begin{array}{ll}1 & 0\end{array}\right)\binom{x_{1}}{x_{2}}$.
(iii) The linearized state-space model from part (ii) is:

$$
\begin{aligned}
\dot{x}_{1} & =x_{2} \\
\dot{x}_{2} & =\frac{m g l}{J} x_{1}-\frac{\gamma}{J} x_{2}+\frac{l}{J} u \\
y & =x_{1}
\end{aligned}
$$

We take the Laplace transform (assuming zero i.c.'s):

$$
\begin{aligned}
s X_{1}(s) & =X_{2}(s) \\
s X_{2}(s) & =\frac{m g l}{J} X_{1}(s)-\frac{\gamma}{J} X_{2}(s)+\frac{l}{J} U(s) \\
Y(s) & =X_{1}(s)
\end{aligned}
$$

Substituting $s X_{1}$ for X_{2} in the second equation and rearranging, we have

$$
\left(s^{2}+\frac{\gamma}{J} s-\frac{m g l}{J}\right) X_{1}(s)=\frac{l}{J} U(s)
$$

Since $Y(s)=X_{1}(s)$, the transfer function is given by

$$
\begin{aligned}
H(s) & =\frac{Y(s)}{U(s)} \\
& =\frac{\frac{l}{J}}{s^{2}+\frac{\gamma}{J} s-\frac{m g l}{J}} \\
& =\frac{l}{J s^{2}+\gamma s-m g l}
\end{aligned}
$$

Problem 5

Observer Canonical Form:

$$
\binom{\dot{x}_{1}}{\dot{x}_{2}}=\left(\begin{array}{cc}
0 & -a_{0} \\
1 & -a_{1}
\end{array}\right)\binom{x_{1}}{x_{2}}+\binom{b_{0}}{b_{1}} u, \quad y=\left(\begin{array}{ll}
0 & 1
\end{array}\right)\binom{x_{1}}{x_{2}} .
$$

The differential equations:

$$
\begin{gathered}
\dot{x_{1}}=-a_{0} x_{2}+b_{0} u, \quad y=x_{2} \\
\dot{x_{2}}=x_{1}-a_{1} x_{2}+b_{1} u
\end{gathered}
$$

In s-domain:

$$
\begin{gathered}
s X_{1}=-a_{0} X_{2}+b_{0} U, \quad Y=X_{2} \\
s X_{2}=X_{1}-a_{1} X_{2}+b_{1} U
\end{gathered}
$$

Multiply s to the $s X_{2}$ equation:

$$
s^{2} X_{2}=s X_{1}-a_{1} s X_{2}+b_{1} s U
$$

Substitute $s X_{1}$,

$$
\begin{gathered}
s^{2} X_{2}=-a_{0} X_{2}+b_{0} U-a_{1} s X_{2}+b_{1} s U \\
\left(s^{2}+a_{1} s+a_{0}\right) X_{2}=\left(b_{0}+b_{1} s\right) U
\end{gathered}
$$

Since $Y=X_{2}$, hence

$$
\left(s^{2}+a_{1} s+a_{0}\right) Y=\left(b_{0}+b_{1} s\right) U
$$

Transfer function, $H(s)=\frac{Y(s)}{U(s)}=\frac{b_{1} s+b_{0}}{s^{2}+a_{1} s+a_{0}}$
Controller Canonical Form

$$
\binom{\dot{x}_{1}}{\dot{x}_{2}}=\left(\begin{array}{cc}
0 & 1 \\
-a_{0} & -a_{1}
\end{array}\right)\binom{x_{1}}{x_{2}}+\binom{0}{1} u, \quad y=\left(\begin{array}{ll}
b_{0} & b_{1}
\end{array}\right)\binom{x_{1}}{x_{2}} .
$$

The differential equations:

$$
\begin{gathered}
\dot{x_{1}}=x_{2} \quad y=b_{0} x_{1}+b_{1} x_{2} \\
\dot{x_{2}}=-a_{0} x_{1}-a_{1} x_{2}+u
\end{gathered}
$$

In s-domain:

$$
\begin{gathered}
s X_{1}=X_{2} \quad Y=b_{0} X_{1}+b_{1} X_{2} \\
s X_{2}=-a_{0} X_{1}-a_{1} X_{2}+U
\end{gathered}
$$

Substitute $s X_{1}=X_{2}$ in the Y equation,

$$
\begin{aligned}
Y & =b_{0} X_{1}+b_{1} s X_{1} \\
\therefore \frac{Y}{X_{1}} & =b_{0}+b_{1} s
\end{aligned}
$$

Substitute $s X_{1}=X_{2}$ in the $s X_{2}$ equation

$$
\begin{aligned}
& s^{2} X_{1}=-a_{0} X_{1}-a_{1} s X_{1}+U \\
& \therefore \frac{X_{1}}{U}=\frac{1}{s^{2}+a_{1} s+a_{0}}
\end{aligned}
$$

Therefore,

$$
\begin{aligned}
\frac{Y}{X_{1}} \cdot \frac{X_{1}}{U} & =\left(b_{0}+b_{1} s\right) \cdot \frac{1}{s^{2}+a_{1} s+a_{0}} \\
\frac{Y}{U} & =\frac{b_{1} s+b_{0}}{s^{2}+a_{1} s+a_{0}}
\end{aligned}
$$

Transfer function, $H(s)=\frac{Y(s)}{U(s)}=\frac{b_{1} s+b_{0}}{s^{2}+a_{1} s+a_{0}}$

This shows that the same transfer function can be realized by several different state-space models.

