# UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN 

Department of Electrical and Computer Engineering
ECE 486: Control Systems

## Homework 1 Solutions

Spring 2024

## Solution 1

Solution:
(i)

$$
\begin{gathered}
P(\lambda)=\left|\begin{array}{cc}
1-\lambda & 4 \\
4 & 2-\lambda
\end{array}\right|=(1-\lambda)(2-\lambda)-4 \times 4=\lambda^{2}-3 \lambda-14 \\
P(\lambda)=0 \Rightarrow \lambda_{1}=\frac{3+\sqrt{65}}{2}, \lambda_{2}=\frac{3-\sqrt{65}}{2}
\end{gathered}
$$

(ii)

$$
\begin{gathered}
P(\lambda)=\left|\begin{array}{cc}
1-\lambda & -3 \\
3 & 1-\lambda
\end{array}\right|=(1-\lambda)(1-\lambda)+3 \times 3=\lambda^{2}-2 \lambda+10 \\
P(\lambda)=0 \Rightarrow \lambda_{1}=1+3 j, \lambda_{2}=1-3 j
\end{gathered}
$$

(iii)

$$
\begin{gathered}
P(\lambda)=\left|\begin{array}{cc}
2-\lambda & 1 \\
0 & 2-\lambda
\end{array}\right|=(2-\lambda)(2-\lambda)=\lambda^{2}-3 \lambda+3 \\
P(\lambda)=0 \Rightarrow \lambda_{1}=\lambda_{2}=2
\end{gathered}
$$

## Solution 2

(i)

$$
|3+2 j|=\sqrt{3^{2}+2^{2}}=\sqrt{13}, \phi_{1}=\arctan \frac{2}{3} \approx 0.588
$$

(ii)

$$
|2-j|=\sqrt{2^{2}+1^{2}}=\sqrt{5}, \phi_{2}=\arctan \frac{-1}{2} \approx-0.464
$$

(iii)

$$
\left|\frac{3+2 j}{2-j}\right|=\frac{|3+2 j|}{|2-j|}=\frac{\sqrt{65}}{5}, \phi_{3}=\phi_{1}-\phi_{2}=\arctan \frac{-1}{2} \approx 1.052
$$

General rule: for two complex numbers $z_{1}=\left|z_{1}\right| e^{j \phi_{1}}$ and $z_{2}=\left|z_{2}\right| e^{j \phi_{2}}$,

$$
\frac{z_{1}}{z_{2}}=m e^{j \phi}
$$

with

$$
m=\frac{\left|z_{1}\right|}{\left|z_{2}\right|}, \quad \phi=\phi_{1}-\phi_{2}
$$

## Solution 3

The current through the capacitor is $I=C \frac{d V_{C}}{d t}$. The voltage acorss the inductor is $V_{L}=L \frac{d I}{d t}$. The voltage across the resistor is $V_{R}=R I$.

Now take $x_{1}=V_{C}, x_{2}=\frac{d V_{C}}{d t}$. Notice that

$$
V_{R}=R I=R C \frac{d V_{C}}{d t}=R C x_{2}, V_{L}=L \frac{d I}{d t}=L C \frac{d^{2} V_{C}}{d t^{2}}=L C \dot{x}_{2}
$$

Applying KVL, $V_{C}+V_{L}+V_{R}=V_{S} \Rightarrow x_{1}+R C x_{2}+L C \dot{x}_{2}=V_{S}$.
Hence we should have

$$
\begin{gathered}
\dot{x}_{1}=x_{2} \\
\dot{x}_{2}=-\frac{1}{R C} x_{1}-\frac{L}{R} x_{2}+\frac{1}{R C} V_{S} \\
\Rightarrow\binom{\dot{x}_{1}}{\dot{x}_{2}}=\left(\begin{array}{cc}
0 & 1 \\
-\frac{1}{L C} & -\frac{R}{L}
\end{array}\right)\binom{x_{1}}{x_{2}}+\binom{0}{\frac{1}{L C}} V_{S}
\end{gathered}
$$

## Solution 4

(i) Pick $x_{1}=x, x_{2}=\dot{x}$, then

$$
\binom{\dot{x}_{1}}{\dot{x}_{2}}=\left(\begin{array}{cc}
0 & 1 \\
0 & -1
\end{array}\right)\binom{x_{1}}{x_{2}}+\binom{0}{-1} u
$$

(ii) Pick $x_{1}=x, x_{2}=\dot{x}, x_{3}=\ddot{x}$, then

$$
\left(\begin{array}{l}
\dot{x}_{1} \\
\dot{x}_{2} \\
\dot{x}_{3}
\end{array}\right)=\left(\begin{array}{ccc}
0 & 1 & 0 \\
0 & 0 & 1 \\
1 & 0 & -1
\end{array}\right)\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right)+\left(\begin{array}{l}
0 \\
0 \\
1
\end{array}\right) u
$$

## Solution 5

(i) Across the capacitor, $I_{C}=C \frac{d V}{d t}$. Across the inductor, $V=L \frac{d I_{L}}{d t}$. Applying KCL,

$$
I_{C}+I_{L}+I=0
$$

Take derivative on both sides of the above equation and substitute $I$ with $g(V)$,

$$
\begin{gathered}
\frac{d I_{C}}{d t}+\frac{d I_{L}}{d t}+\frac{d g}{d t}=0 \\
\Rightarrow \frac{C d^{2} V}{d t^{2}}+\frac{V}{L}+\frac{d g}{d V} \frac{d V}{d t}=0
\end{gathered}
$$

Notice that chain rule has been applied here for deriving the last term on the left.
(ii) Pick $x_{1}=V, x_{2}=\frac{d V}{d t}$, then the ODE in (i) becomes:

$$
C \dot{x}_{2}+\frac{x_{1}}{L}+\frac{d g}{d x_{1}} x_{2}=0
$$

Hence the state space model of the system is:

$$
\begin{aligned}
& \dot{x}_{1}=x_{2} \\
& \dot{x}_{2}=-\frac{x_{1}}{L C}-\frac{d g}{C d x_{1}} x_{2}
\end{aligned}
$$

(iii)

$$
g(V)=-V+\frac{1}{3} V^{3} \Rightarrow \frac{d g}{d V}=-1+V^{2}
$$

Hence the state space model in (ii) becomes

$$
\binom{\dot{x}_{1}}{\dot{x}_{2}}=\binom{x_{2}}{-\frac{x_{1}}{L C}-\frac{\left(-1+x_{1}^{2}\right) x_{2}}{C}}=: f\left(x_{1}, x_{2}\right)
$$

At equilibrium we must have $\dot{x}_{1}=\dot{x}_{2}=0$, which means $f\left(x_{1}, x_{2}\right)=0$. Inspecting on the first element of $f$, it suggests $x_{2}=0$. Replace $x_{2}$ with 0 in the second element of $f$ and we see that it is 0 only if $x_{1}$ is 0 . Therefore the only equilibrium of the system is the origin.
The system is linearized by taking the Jacobian of $f$ at the origin:

$$
\nabla f(0)=\left.\left(\begin{array}{cc}
\frac{\partial f_{1}}{\partial x_{1}} & \frac{\partial f_{1}}{\partial x_{2}} \\
\frac{\partial f_{2}}{\partial x_{1}} & \frac{\partial f_{2}}{\partial x_{2}}
\end{array}\right)\right|_{0}=\left.\left(\begin{array}{cc}
0 & 1 \\
-\frac{1}{L C}-\frac{2 x_{1} x_{2}}{C} & \frac{1-x_{1}^{2}}{C}
\end{array}\right)\right|_{0}=\left(\begin{array}{cc}
0 & 1 \\
-\frac{1}{L C} & \frac{1}{C}
\end{array}\right)
$$

Hence the linearized system is:

$$
\binom{\dot{x}_{1}}{\dot{x}_{2}}=\left(\begin{array}{cc}
0 & 1 \\
-\frac{1}{L C} & \frac{1}{C}
\end{array}\right)\binom{x_{1}}{x_{2}}
$$

