1. Consider the transfer function \(G(s) = \frac{1}{s(s^2 + 4s + 8)} \), which already appeared in Problem Sets 5 and 6.

a) Recall (or rederive) the value of \(K \) for which the closed-loop characteristic equation \(1 + KG(s) \) has roots on the \(j\omega \)-axis.

b) For this value of \(K \), make the Bode plot of \(KG(s) \) using MATLAB and explain how you can confirm the presence of \(j\omega \)-axis closed-loop poles using this plot.

c) Compute the gain and phase margins for \(K = 12 \) using the corresponding Bode plot.

d) Determine the gain \(K \) that gives the phase margin of 60\(^\circ\).

e) Plot the step responses of the closed-loop systems for \(K = 12 \) and the \(K \) you found in part d). Which system has better damping (smaller overshoot)? Why?

Solution:

\[
G(s) = \frac{1}{s(s^2 + 4s + 8)}
\]

a) The critical value for \(K \) is 32 (from HW7), which causes roots of closed-loop system lie on \(s = \pm j\sqrt{8} = \pm j2.8284 \).

b) The attached Bode plot for \(KG(s) \) (\(K = 32 \)) shows that both of GM = PM = 0\(\mid_{\omega = \sqrt{8}} \), which shows that at \((\omega = \sqrt{8}) \) the \(|KG(j\omega)| = 1 \) and \(\angle KG(j\omega) = -\pi \) which are equivalent to gain and phase conditions of Root Locus.

c) Attached plot shows GM = 8.52 dB (2.67) at \(\omega = \sqrt{8} \) and PM = 45.5\(^\circ\) at \(\omega = 1.45 \).
d) According to the phase plot, for PM = 60°, we need \(\omega_c = 1 \), plugging this in \(|KG(j\omega_c)| = 1 \)
\[\therefore K = \sqrt{65} \approx 8.1 \]
e) System with \(K = 8.1 \), because larger PM is equivalent to larger \(\zeta \), and larger \(\zeta \) is equivalent to smaller overshoot!

2. Consider the transfer function \(G(s) = \frac{1}{(s - 1)(s^2 + 2s + 5)} \).

a) Derive the values of \(K \) for which the closed-loop characteristic equation \(1 + KG(s) \) has roots on the \(j\omega \)-axis.

b) For these values of \(K \), make the Bode plots of \(KG(s) \) using MATLAB and explain how you can confirm the presence of \(j\omega \)-axis closed-loop poles using these plots.

c) Compute the gain and phase margins for \(K = 7 \) using the corresponding Bode plot.

d) What is the largest possible phase margin? Determine the gain \(K \) for which it is achieved.

e) The transfer function \(KG(j\omega) \) in this problem has a term of the form \((j\omega\tau - 1)^{-1} \) (unstable real pole) which has not been considered in class. Performing an analysis similar to the one done in class for a term of the form \((j\omega\tau + 1)^{-1} \) (stable real pole), explain the contribution of such a term both to the magnitude and to the phase plot.
Solution:

\[G(s) = \frac{1}{(s - 1)(s^2 + 2s + 5)} \]

a) \(1 + KG(s) = 0 \Big|_{s=j\omega} \Rightarrow s^3 + s^2 + 3s - 5 + K \Big|_{s=j\omega} = 0 \)

\[\Rightarrow -j\omega^3 - \omega^2 + 3j\omega - 5 + K = 0 \]

\[\Rightarrow \begin{cases}
\omega^3 - 3\omega = 0 & \Rightarrow \omega = 0 \quad \Rightarrow K = 5 \\
\omega^2 + 5 - K = 0 & \Rightarrow \omega = \pm \sqrt{3} \quad \Rightarrow K = 8
\end{cases} \]

b) According to the attached plots for \(K = 5 \) and \(K = 8 \), we can see that both GM and PM are zero.

c) GM = 1.16 dB, PM = 13.2

d) According to Bode plot, maximum phase (and PM in this case) achieved on \(\omega \approx 1 \) (rad/sec), so we need to choose \(K \) in such a way that this is also equal to \(\omega_c \). The result would be \(K \approx 6.3 \).

e) \((j\omega\tau + 1)^{-1}\) and \((j\omega\tau - 1)^{-1}\) have the same magnitude \(\frac{1}{\sqrt{\omega^2 \tau^2 + 1}} \).

Before the break point \(\omega = \frac{1}{\tau}, (j\omega\tau + 1)^{-1} \approx 1 \). After the break point, \((j\omega\tau + 1)^{-1} \approx (j\omega\tau)^{-1} \). Therefore, its phase changes from 0° to −90°.

The phase of unstable real pole is trickier. Before the break point \(\omega = \frac{1}{\tau}, (j\omega\tau - 1)^{-1} \approx -1 \). After the break point, \((j\omega\tau - 1)^{-1} \approx (j\omega\tau)^{-1} \). Therefore, its phase changes from −180° to −270°.

3. Show that for the transfer function \(KG(s) = \frac{\omega_n^2 \tau^2}{s^2 + 2\zeta \omega_n s} \), the phase margin is independent of \(\omega_n \) and is given by

\[PM = \tan^{-1} \left(\frac{2\zeta}{\sqrt{4\zeta^4 + 1 - 2\zeta^2}} \right) \]

Solution:

\[KG(s) = \frac{\omega_n^2}{s^2 + 2\zeta \omega_n s} \]
To calculate the phase margin, we first find the gain-crossover-frequency (ω_c):

$$|KG(j\omega)|\bigg|_{\omega=\omega_c} = 1 \Rightarrow \frac{\omega_n^2}{|\omega_c^2 - 2j\omega_n\omega_c\zeta|} = 1$$

$$\Rightarrow \frac{\omega_n^2}{\sqrt{\omega_n^4 + 4\omega_n^2\omega_c^2\zeta^2}} = 1$$

$$\Rightarrow \omega_n^2 = \omega_c^4 + 4\zeta^2\omega_n^2\omega_c^2$$

$$\Rightarrow \omega_n^2 = -2\zeta^2\omega_n^2 + \omega_n^2\sqrt{4\zeta^4 + 1}$$

$$\Rightarrow \omega_n^2 = -2\zeta^2\omega_n^2 + \omega_n^2\sqrt{4\zeta^4 + 1 - 2\zeta^2}$$

$$KG(j\omega) = \frac{\omega_n^2}{-\omega_c^2 + 2j\zeta\omega_n\omega_c}$$

$$\angle KG(j\omega) = -\tan^{-1}\frac{2\zeta\omega_n\omega_c}{-\omega_c^2}$$

$$\Rightarrow \theta = \tan^{-1}(x) \iff \pi + \theta = \tan^{-1}(x).$$

Note that $\theta = \tan^{-1}x \iff \pi + \theta = \tan^{-1}(x)$.

4. Consider the system $G(s) = \frac{1}{s(s+1)}$.

a) Design a PD controller that achieves phase margin $\text{PM} \approx 90^\circ$ and closed-loop bandwidth $\omega_{\text{BW}} \approx 10$. Verify that the specs are met (be careful: you will need both open-loop and closed-loop data for this).

b) Can you modify the above design to get $\omega_{\text{BW}} \approx 1$, while maintaining $\text{PM} \approx 90^\circ$? Explain how or why not.

Solution:

$$G(s) = \frac{1}{s(s+1)}$$

a) The bode plot of $G(s)$ (attached) shows that we have a phase margin of $\approx 52^\circ$ (but small ω_c). We want our PD controller to increase ω_c as well as PM.

$$D(s) = K(\tau s + 1),$$

we choose $1/\tau < 10$ to make sure the gain is high enough at $\omega_c = 10$. Also, we choose $\frac{1}{\tau} < 10$ to make sure that magnitude slope at $\omega_c = 10$ is -1.

Let $\tau = 2$ and $K\bigg|_{\omega_c=10} = 1 \Rightarrow K \approx 5 \Rightarrow D(s) = 5(2s + 1)$
b) Achieving $\omega_{BW} = 1$ and $PM = 90^\circ$ is impossible unless we cancel the pole at $s = -1$ (i.e., $D(s) = s + 1$). Because there is a break point at $\omega = 1$ so we can’t maintain slope $= -1$ on that point. Therefore, we cannot make $\omega_{BW} = 1$ and $PM = 90^\circ$ unless we take $D(s) = s + 1$.

5. In class (Thu., Mar 17) we studied the following problem: for the system $G(s) = \frac{1}{s^2}$, design a lead controller that gives $PM \approx 90^\circ$ and $\omega_{BW} \approx 0.5$. This homework problem asks you to check and improve the design given in class.

a) For the controller derived in class:

$$KD(s) = \frac{1}{\frac{s}{16} + 1}$$

compute the PM, open-loop crossover frequency ω_c, and closed-loop bandwidth ω_{BW}. Plot the closed-loop step response. Explain the reasons why this design didn’t fully meet the specs.

b) Improve the design to obtain PM and ω_{BW} closer to the specs. Does the new closed-loop step response show better damping?

Solution:

$$G(s) = \frac{1}{s^2}$$

a) $$KD(s) = \frac{1}{\frac{s}{16} + 1}$$
Using the bode plot attached, we can see that PM = 63.8° and ωc = 0.606. We can see that PM is far from 90°. For this case, the whole PM should be provided by controller. It means that

$$\sin \phi_m = \frac{p - z}{p + z}$$

where ϕ_m is the maximum phase provided by Lead controller and p and z are lead pole and lead zero, respectively. We need either $z \approx 0$ or $\frac{p}{z} \to \infty$.

b) To improve the above design, we need to enlarge $\frac{p}{z}$; an example would be:

$$KD(s) = 2.5 \frac{s + 0.095}{s + 3.8}$$

which improves the PM to 72°.

An “extreme” design is also provided by

$$KD(s) = 5 \frac{s}{s + 10}$$

The bode and time response is attached.
Bode Diagram

$G_m = \infty \text{ dB (at \infty \text{ rad/s})}$, $P_m = 87.1 \text{ deg (at 0.499 rad/s)}$

Step Response

<table>
<thead>
<tr>
<th>Time (seconds)</th>
<th>Previous</th>
<th>Improved</th>
<th>Extreme</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1.4</td>
</tr>
<tr>
<td>1</td>
<td>0.2</td>
<td>0.6</td>
<td>1.2</td>
</tr>
<tr>
<td>5</td>
<td>0.8</td>
<td>1.0</td>
<td>1.2</td>
</tr>
<tr>
<td>10</td>
<td>1.0</td>
<td>1.2</td>
<td>1.4</td>
</tr>
<tr>
<td>20</td>
<td>1.2</td>
<td>1.4</td>
<td>1.4</td>
</tr>
<tr>
<td>50</td>
<td>1.4</td>
<td>1.4</td>
<td>1.4</td>
</tr>
</tbody>
</table>