Reading: FPE, Sections 6.2, 6.4-6.6, 6.7.1, 6.7.2 (all editions).
Problems: (you can use MATLAB in all problems, but you must explain all steps and justify all answers)

1. Consider the transfer function $G(s)=\frac{1}{s\left(s^{2}+4 s+8\right)}$, which already appeared in Problem Sets 5 and 6 .
a) Recall (or rederive) the value of K for which the closed-loop characteristic equation $1+K G(s)$ has roots on the $j \omega$-axis.
b) For this value of K, make the Bode plot of $K G(s)$ using MATLAB and explain how you can confirm the presence of $j \omega$-axis closed-loop poles using this plot.
c) Compute the gain and phase margins for $K=12$ using the corresponding Bode plot.
d) Determine the gain K that gives the phase margin of 60°.
e) Plot the step responses of the closed-loop systems for $K=12$ and the K you found in part d). Which system has better damping (smaller overshoot)? Why?

Solution:

$$
G(s)=\frac{1}{s\left(s^{2}+4 s+8\right)}
$$

a) The critical value for K is 32 (from HW7), which causes roots of closed-loop system lie on $s= \pm j \sqrt{8}= \pm j 2.8284$.
b) The attached Bode plot for $K G(s)(K=32)$ shows that both of $\mathrm{GM}=\mathrm{PM}=\left.0\right|_{\omega=\sqrt{8}}$, which shows that at $(\omega=\sqrt{8})$ the $|K G(j \omega)|=1$ and $\angle K G(j \omega)=-\pi$ which are equivalent to gain and phase conditions of Root Locus.

c) Attached plot shows $\mathrm{GM}=8.52 \mathrm{~dB}(2.67)$ at $\omega=\sqrt{8}$ and $\mathrm{PM}=45.5^{\circ}$ at $\omega=1.45$.

d) According to the phase plot, for $\mathrm{PM}=60^{\circ}$, we need $\omega_{c}=1$, plugging this in $\left|K G\left(j \omega_{c}\right)\right|=1$
$\therefore K=\sqrt{65} \approx 8.1$
e) System with $K=8.1$, because larger PM is equivalent to larger ζ, and larger ζ is equivalent to smaller overshoot!

2. Consider the transfer function $G(s)=\frac{1}{(s-1)\left(s^{2}+2 s+5\right)}$.
a) Derive the values of K for which the closed-loop characteristic equation $1+K G(s)$ has roots on the $j \omega$-axis.
b) For these values of K, make the Bode plots of $K G(s)$ using MATLAB and explain how you can confirm the presence of $j \omega$-axis closed-loop poles using these plots.
c) Compute the gain and phase margins for $K=7$ using the corresponding Bode plot.
d) What is the largest possible phase margin? Determine the gain K for which it is achieved.
e) The transfer function $K G(j \omega)$ in this problem has a term of the form $(j \omega \tau-1)^{-1}$ (unstable real pole) which has not been considered in class. Performing an analysis similar to the one done in class for a term of the form $(j \omega \tau+1)^{-1}$ (stable real pole), explain the contribution of such a term both to the magnitude and to the phase plot.

Solution:

$$
G(s)=\frac{1}{(s-1)\left(s^{2}+2 s+5\right)}
$$

a) $1+K G(s)=\left.0\right|_{s=j \omega} \Rightarrow s^{3}+s^{2}+3 s-5+\left.K\right|_{s=j \omega}=0$
$\Rightarrow-j \omega^{3}-\omega^{2}+3 j \omega-5+K=0$
$\Rightarrow\left\{\begin{array}{l}\omega^{3}-3 \omega=0 \\ \omega^{2}+5-K=0\end{array} \Rightarrow \begin{array}{l}\omega=0 \\ \omega= \pm \sqrt{3}\end{array} \Rightarrow \begin{array}{l}K=5 \\ K=8\end{array}\right.$
b) According to the attached plots for $K=5$ and $K=8$, we can see that both GM and PM are zero.

c) $\mathrm{GM}=1.16 \mathrm{~dB}, \mathrm{PM}=13.2$
d) According to Bode plot, maximum phase (and PM in this case) achieved on $\omega \approx 1(\mathrm{rad} / \mathrm{sec})$, so we need to choose K in such a way that this is also equal to ω_{c}. The result would be $K \approx 6.3$.
e) $(j \omega \tau+1)^{-1}$ and $(j \omega \tau-1)^{-1}$ have the same magnitude $\frac{1}{\sqrt{(\omega \tau)^{2}+1}}$.

Before the break point $\omega=\frac{1}{\tau},(j \omega \tau+1)^{-1} \approx 1$. After the break point, $(j \omega \tau+1)^{-1} \approx(j \omega \tau)^{-1}$. Therefore, its phase changes from 0° to -90°.
The phase of unstable real pole is trickier. Before the break point $\omega=\frac{1}{\tau},(j \omega \tau-1)^{-1} \approx-1$. After the break point, $(j \omega \tau-1)^{-1} \approx(j \omega \tau)^{-1}$. Therefore, its phase changes from -180° to -90°.
3. Show that for the transfer function $K G(s)=\frac{\omega_{n}^{2}}{s^{2}+2 \zeta \omega_{n} s}$, the phase margin is independent of ω_{n} and is given by

Solution:

$$
P M=\tan ^{-1}\left(\frac{2 \zeta}{\sqrt{\sqrt{4 \zeta^{4}+1}-2 \zeta^{2}}}\right)
$$

$$
K G(s)=\frac{\omega_{n}^{2}}{s^{2}+2 \zeta \omega_{n} s}
$$

To calculate the phase margin, we first find the gain-crossover-frequency $\left(\omega_{c}\right)$:

$$
\begin{aligned}
|K G(j \omega)|_{\omega=\omega_{c}}=1 & \Rightarrow \frac{\omega_{n}^{2}}{\left|-\omega_{c}^{2}+2 j \omega_{n} \omega_{c} \zeta\right|}=1 \\
& \Rightarrow \frac{\omega_{n}^{2}}{\sqrt{\omega_{c}^{4}+4 \omega_{n}^{2} \omega_{c}^{2} \zeta^{2}}}=1 \\
\Rightarrow & \omega_{n}^{4}=\omega_{c}^{4}+4 \zeta^{2} \omega_{n}^{2} \omega_{c}^{2} \\
\Rightarrow & \omega_{c}^{4}+4 \zeta^{2} \omega_{n}^{2} \omega_{c}^{2}-\omega_{n}^{4}=0 \\
& \Rightarrow \quad \omega_{c}^{2}=-2 \zeta^{2} \omega_{n}^{2}+\omega_{n}^{2} \sqrt{4 \zeta^{4}+1} \\
& =\left(\sqrt{4 \zeta^{4}+1}-2 \zeta^{2}\right) \omega_{n}^{2} \\
& K G(j \omega)=\frac{\omega_{n}^{2}}{-\omega_{c}^{2}+2 j \zeta \omega_{n} \omega_{c}} \\
& \angle K G(j \omega)=-\tan ^{-1} \frac{2 \zeta \omega_{n} \omega_{c}}{-\omega_{c}^{2}} \\
& =\tan ^{-1} \frac{2 \zeta}{\sqrt{\sqrt{4 \zeta^{4}+1}-2 \zeta^{2}}}
\end{aligned}
$$

Note that $\theta=\tan ^{-1} x \Longleftrightarrow \pi+\theta=\tan ^{-1}(x)$.
4. Consider the system $G(s)=\frac{1}{s(s+1)}$.
a) Design a PD controller that achieves phase margin $\mathrm{PM} \approx 90^{\circ}$ and closed-loop bandwidth $\omega_{\mathrm{BW}} \approx 10$. Verify that the specs are met (be careful: you will need both open-loop and closed-loop data for this).
b) Can you modify the above design to get $\omega_{\mathrm{BW}} \approx 1$, while maintaining $\mathrm{PM} \approx 90^{\circ}$? Explain how or why not.

Solution:

$$
G(s)=\frac{1}{s(s+1)}
$$

a) The bode plot of $G(s)$ (attached) shows that we have a phase margin of $\approx 52^{\circ}$ (but small ω_{c}). We want our PD controller to increase ω_{c} as well as PM.

$D(s)=K(\tau s+1)$, we choose $1 / \tau \ll 10$ to make sure the gain is high enough at $\omega_{c}=10$. Also, we choose $\frac{1}{\tau}<1$ to make sure that magnitude slope at $\omega_{c}=10$ is -1 .
Let $\tau=2$ and $K\left|\frac{2 j \omega_{c}+1}{j \omega_{c}\left(j \omega_{c}+1\right)}\right|_{\omega_{c}=10}=1 \Rightarrow K \approx 5 \Rightarrow D(s)=5(2 s+1)$

b) Achieving $\omega_{\mathrm{BW}}=1$ and $\mathrm{PM}=90^{\circ}$ is impossible unless we cancel the pole at $s=-1$ (i.e., $\left.D(s)=s+1\right)$. Because there is a break point at $\omega=1$ so we can't maintain slope $=-1$ on that point. Therefore, we cannot make $\omega_{\mathrm{BW}}=1$ and $\mathrm{PM}=90^{\circ}$ unless we take $D(s)=s+1$.
5. In class we studied the following problem: for the system $G(s)=\frac{1}{s^{2}}$, design a lead controller that gives $\mathrm{PM} \approx 90^{\circ}$ and $\omega_{\mathrm{BW}} \approx 0.5$. This homework problem asks you to check and improve the design given in class.
a) For the controller derived in class:

$$
K D(s)=\frac{1}{16} \frac{\frac{s}{0.1}+1}{\frac{s}{2}+1}
$$

compute the PM, open-loop crossover frequency ω_{c}, and closed-loop bandwidth ω_{BW}. Plot the closed-loop step response. Explain the reasons why this design didn't fully meet the specs.
b) Improve the design to obtain PM and ω_{BW} closer to the specs. Does the new closed-loop step response show better damping?

Solution:

$$
G(s)=\frac{1}{s^{2}}
$$

a)

$$
K D(s)=\frac{1}{16} \frac{\frac{s}{0.1}+1}{\frac{s}{2}+1}
$$

Using the bode plot attached, we can see that $\mathrm{PM}=63.8^{\circ}$ and $\omega_{c}=0.606$. We can see that PM is far from 90°. For this case, the whole PM should be provided by controller. It means that

$$
\sin \phi_{m}=\frac{p-z}{p+z}
$$

where ϕ_{m} is the maximum phase provided by lead controller and p and z are lead pole and lead zero, respectively. We need either $z \approx 0$ or $\frac{p}{z} \rightarrow \infty$.
b) To improve the above design, we need to enlarge $\frac{p}{z}$, an example would be:

$$
K D(s)=2.5 \frac{s+0.095}{s+3.8}
$$

which improves the PM to 72°.

An "extreme" design is also provided by

$$
K D(s)=5 \frac{s}{s+10} .
$$

The bode and time response is attached.

