
ECE 486 PROBLEM SET 6 - SOLUTION Fall 2023

Reading: FPE, Sections 5.3, 5.4.1, 5.4.2, 5.5.

Problems:

1. Consider the transfer function L(s) = s2+2s+2
s2−2s+2

a) Plot by hand the negative (K < 0) root locus for L(s), using Rules 1- 6 for negative root loci.
Make your root locus as explicit as possible by specifying (when applicable) the real-axis part, asymptotes,
arrival and departure angles, imaginary axis crossings, and points of multiple roots. Turn in the hand plot
and accompanying calculations and explanations.

b) Plot the same root locus in MATLAB. Turn in the MATLAB plot.

c) Referring to the root locus, explain how the closed-loop poles move along the branches from the
open-loop poles to the open-loop zeros as K is decreased from 0 to −∞. You will notice unusual behavior
which does not occur in positive root loci.

Solution:

a) Rule 1: # Poles = n = 2, #zeros = m = 2
Rule 2: Not applicable since there are no poles/zeros on real axis.
Rule 3: # of asymptotes = n-m = 0
Rule 4: Angle of departure and arrivials for the poles and zeros respectively is given by:

φdep,1 = ψ1 + ψ2 − φ2 = 0 + π/4− π/2 = −π/4
φdep,2 = ψ1 + ψ2 − φ1 = −π/4 + 0 + π/2 = π/4

ψarr,1 = φ1 + φ2 − ψ2 = π + 3π/4 − π/2 = 5π/4

ψarr,2 = φ1 + φ2 − ψ1 = −3π/4 + π + π/2 = 3π/4

Rule 5: Root locus will have multiple roots at real axis crossing, given by solving dK
dσ

= 0 for σ
where K(σ) = 1

L(σ) .

K(σ) =
σ2 − 2σ + 2

σ2 + 2σ + 2

dK

dσ
= 0 =⇒ σ = ±

√
2

At both real axis crossings, there lies two roots. Loci will approach this point at ±π/2 and leave it
at 0 and π.

Rule 6: Imaginary axis crossing is given by solving 1−KL(jω) = 0 for K.

1−K
(jω)2 + 2(jω) + 2

(jω)2 − 2(jω) + 2
= 0 =⇒ K = −1



b)

c) Both poles approach real axis as K is increased. At real axis crossing, loci depart with separation π.
One of the loci goes to positive infinity and jumps to negative infinity and return for a zero. The two
loci again intersect at real axis and then both terminate at zeros.

2. Consider the plant transfer function G(s) =
1

s2 − 1
. Suppose that the plant is connected in standard

feedback configuration with the lead controller Dlead(s) = K
s+ zlead
s+ plead

and that the control objective is to

place closed-loop poles at −2± 2j. We assume throughout that to satisfy noise suppression requirements,
the value of the lead pole is fixed at plead = 10.

a) Using the root locus phase condition, compute the value of the lead zero that achieves the pole
placement objective. (If performing angle computations in MATLAB, note that MATLAB only works with
radians.)

b) Using the value of zlead that you computed in part a), write down the equation for the gain K that
corresponds to the closed-loop poles at −2± 2j. Solve it for K. (Hint: you have two equations, one from
the real part and the other from the imaginary part, and both should give the same K.)

c) Using MATLAB, plot the root locus for 1 + K
s+ zlead
s+ 10

1

s2 − 1
= 0 with the value of zlead found

in part a). By mouse-clicking, verify that the value of K you found in part b) indeed corresponds to the
desired poles.

d) Is the closed-loop system with these values of zlead and K stable? Explain using the root locus.

e) Find the point of multiple roots on the locus by numerically solving the equation given by Rule 6.
Verify the result by mouse-clicking on the locus.

f) Compute the closed-loop steady-state tracking error to the unit step reference using the formula
e(∞) = 1/(1 +Dlead(0)G(0)). Express the result in percents.

g) Write down the closed-loop transfer function
Dlead(s)G(s)

1 +Dlead(s)G(s)
. Compute its DC gain. Use the DC

gain to find the steady-state tracking error and verify that your result agrees with the one from part f).

h) Using MATLAB, plot the step response of the closed-loop transfer function from part g). Check
that it is consistent with the result of part g).
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To improve tracking, let’s add a lag controller in series with the lead controller. That is, consider the

controller Dlead,lag(s) = K
s+ zlead
s+ 10

· s+ zlag
s+ plag

, where zlead and K are as before while zlag and plag are to be

chosen.

i) How large does the ratio zlag/plag need to be so that the closed-loop steady-state tracking error to
the unit step reference is less than 5%? Use the formula e(∞) = 1/(1 +Dlead,lag(0)G(0)).

j) Fix some values of zlag and plag which satisfy the condition from part i). Write down the closed-loop

transfer function
Dlead,lag(s)G(s)

1 +Dlead,lag(s)G(s)
. Compute its DC gain and verify that it guarantees tracking within

5%.

k) Using MATLAB, plot the step response of the closed-loop transfer function from part j). Check
that the tracking error is improved as predicted in parts i) and j).

l) Using MATLAB, plot the root locus for 1 +K
s+ zlead
s+ 10

s+ zlag
s+ plag

1

s2 − 1
= 0 with the lead zero, lag

zero, and lag pole as above. Do we still get poles at approximately −2 ± 2j for the same gain value K?
If not, go back and make adjustments to the values of zlag and plag, making sure that the ratio zlag/plag
still satisfies the condition of part i). (Hint: the lag zero and lag pole need to be very close to the origin,
so as not to interfere with the lead zero and lead pole.) Is the system stable for this value of K? Explain
by carefully studying the root locus.

Turn in your hand work as well as MATLAB plots. Accuracy of numerical answers up to the second
decimal point is acceptable.

Solution:

a)

L(s) = − 1

K
⇒ ∠L(s) = π + 2πℓ

∠L(s)|s=−2+2j = ∠
s+ zlead
s+ 10

1

s2 − 1

∣

∣

∣

∣

s=−2+2j

= π + 2πℓ

φ1 + φ2 + φ3 − ψ1 = π − tan−1

(

2

3

)

+ π − tan−1 2 + tan−1

(

2

8

)

− ψ1 = π + 2πℓ

146.3099◦ + 116.5651◦ + 14.0362◦ − ψ1 = 180◦ + ℓ360◦

⇒ ψ1 = 96.9112◦ ⇒ tan(180◦ − ψ1) =
2

2− zlead
= 8.25

⇒ 0.25 = 2− zlead ⇒ zlead = 1.7576

b)

1 +K
s+ 1.7576

s+ 10

1

s2 − 1

∣

∣

∣

∣

s=−2+2j

= 0

(s+ 10)(s2 − 1) +K(s+ 1.7576)
∣

∣

s=−2+2j
= 0

s3 + 10s2 + (K − 1)s + (1.75K − 10)
∣

∣

s=−2+2j
= 0

8− 0.2424K − (66 − 2K)j = 0 ⇒ K = 33

c) An alternative way is to use command rlocfind
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d) Yes, because with those values of zlead and K, all closed loop poles should be on LHP. LHP poles
would be p1,2 = −2± 2j, p3 = −6

e)

b(s)
da(s)

ds
− a(s)

db(s)

ds
= 0

⇒ (s + 1.7576)(3s2 + 20s − 1)− (s3 + 10s2 − s− 10) = 0

⇒ 2s3 + 15.2728s2 + 35.152s + 8.2424 = 0

s = −0.2636 (valid), s = −3.6864 ± 1.4293j (not valid)

f)

e(∞) =
1

1 +D(0)G(0)
=

1

1 + 33
(

1.75
10

)

(

1
−1

) = −0.2094 ≈ 21%

g)

Gcl(s) =
G(s)Dlead(s)

1 +G(s)Dlead(s)
=

33 s+1.7576
(s+10)(s2−1)

1 + 33 s+1.7576
(s+10)(s2−1)

=
33(s + 1.7576)

s3 + 10s2 + 32s + 48
=

33s + 58

s3 + 10s2 + 32s+ 48

Gcl(s) =
33× 1.7576

48
= 1.2094

e(∞) = 1−Gcl(0) = −0.2094

h) aaa
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i)

Dlead,lag(s) = K
s+ zlead
s+ plead

s+ zlag
s+ plag

Dlead,lag(0)Gc(0) = −Kzlead
plead

zlag
plag

= −33
1.7576

10

zlag
plag

|e∞| ≤ 0.05 ⇒
∣

∣

∣

∣

∣

1

1− 5.8
zlag
plag

∣

∣

∣

∣

∣

≤ 0.05

⇒ 5.8
zlag
plag

≥ 21 ⇒ zlag
plag

≥ 3.62

j) Choose zlag = 0.04, plag = 0.01

D(s) = 33
s+ 1.7576

s+ 10

s+ 0.04

s+ 0.01

Gcl(s) =
G(s)D(s)

1 +G(s)D(s)
=

33s2 + 59.321s + 2.32

s4 + 10.01s3 + 32.1s2 + 49.311s + 2.22

Gcl(0) =
2.32

2.22
= 1.045 ⇒ |e(∞)| = 0.045

k) aaa
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We choose our lag’s zero-pole very close to the origin, so we expect to see that with K = 33, the
closed loop poles to be very close to −2 ± 2j. As you can see from the plots, the closed-loop poles
would be p1,2 = −1.9644± 2.0171j, p3 = −6.034, p4 = −0.0464 which are all on LHP. Therefore, the
closed-loop system is stable.
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