Reading: FPE, Sections 5.1, 5.2.

Problems:

1. Consider the plant with transfer function $L(s)=\frac{1}{s^{2}+2 s}$. Under the action of a constant feedback gain K, the closed-loop poles are the roots of the characteristic polynomial $s^{2}+2 s+K$.
a) Draw the (positive) root locus. (Use the expression for the closed-loop poles in terms of K obtained via the quadratic formula.)
b) Consider the settling time spec $t_{s} \leq 4$. Give some value (or range of values) of K for which the closed-loop system meets this spec. Justify your choice. Show the corresponding pole locations on the root locus.
c) Consider the rise time spec $t_{r} \leq 1$. Give some value (or range of values) of K for which the closed-loop system meets this spec. Justify your choice. Show the corresponding pole locations on the root locus.
d) Consider the overshoot spec $M_{p} \leq 0.1$. Give some value (or range of values) of K for which the closed-loop system meets this spec. Justify your choice. Show the corresponding pole locations on the root locus.
e) Suppose that it is desired to place the closed-loop poles at $-1 \pm j$. Find the value of K that will achieve this, using the characteristic equation $s^{2}+2 s+K=0$ but without using the quadratic formula. (In other words, you should find a way of doing this that would also work for a higher-order example.)

Solution:

a) Root Locus:

$$
\begin{aligned}
& \text { \# Poles }=n=2, \# \text { zeros }=m=0 \\
& \Rightarrow\left\{\begin{array}{l}
\# \text { of asymptotes }=n-m=2 \\
\alpha=\frac{\Sigma p_{i}-\Sigma z_{i}}{n-m}=\frac{-2}{2}=-1 \quad \text { (center of asymptotes) } \\
\phi=\frac{(2 k+1) \pi}{n-m}= \pm \frac{\pi}{2}
\end{array}\right. \\
& \text { (angle of asymptotes) }
\end{aligned}
$$

b) $t_{s} \leq 4 \Rightarrow \frac{3}{\sigma} \leq 4 \Rightarrow \sigma \geq 0.75$

To satisfy this, we need $K>2 \times 0.75-(0.75)^{2}$ or $K>0.9375$ to make sure that both poles are lying on the left of ($\sigma=0.75$) line (dashed).
c) $t_{r} \leq 1 \Rightarrow \frac{1.8}{\omega_{n}} \leq 1 \Rightarrow \omega_{n} \geq 1.8$

To make sure the poles are outside the $\omega_{n}=1.8$ circle, we need

$$
K \geq \omega_{n}^{2} \Rightarrow K \geq 3.24
$$

d) $M_{p} \leq 0.1$

$$
e^{-\frac{\pi \xi}{\sqrt{1-\xi^{2}}}} \leq 0.1 \Rightarrow\left\{\begin{array}{l}
\frac{\pi \xi}{\sqrt{1-\xi^{2}}} \geq 2.3 \Rightarrow \xi \geq 0.6 \\
\text { or } \\
\pi \tan \theta \geq 2.3 \Rightarrow \theta \geq 36^{\circ}
\end{array}\right.
$$

but in characteristic eq: $s^{2}+2 s+K \approx s^{2}+2 \xi \omega_{n} s+\omega_{n}^{2}$

$$
\left.\Rightarrow \begin{array}{l}
\omega_{n}^{2}=K \\
\xi=\sqrt{\frac{1}{K}} \\
\xi \geq 0.6
\end{array}\right\} \Rightarrow \sqrt{\frac{1}{K}} \geq 0.6 \Rightarrow K \leq 2.78
$$

e) Closed loop poles: $s=-1 \pm j$
\Rightarrow characteristic equation: $(s-1+j)(s-1-j)=s^{2}+2 s+2 \equiv s^{2}+2 s+K \therefore K=2$
$\left({ }^{* *}\right)$ In general, we can also check the gain condition for root Locus (future lectures).
2. Consider the following transfer functions:

$$
\begin{array}{ll}
\text { 1) } L(s)=\frac{1}{s\left(s^{2}+4 s+8\right)} & \text { 2) } L(s)=\frac{s}{(s-1)(s+1)^{2}}
\end{array}
$$

For each one of these, do the following:
a) Mark the zeros and poles on the s-plane and use Rule 2 from class to plot the real-axis part of the root locus.
b) Use the phase condition from class to test whether or not the point $s=j$ is on the root locus. If you run into "non-obvious" angles, estimate rather than calculate them, this should be enough.
c) Apply Rules 3 and 4 to determine asymptotes and departure and arrival angles. Plot the root locus branches based on this information.
d) Apply Rule 5 to determine imaginary-axis crossings (if any), and complete the (positive) root locus by using Rule 6 to check for multiple roots.
e) Plot the (positive) root locus using the MATLAB rlocus command.
f) Repeat items a)-e) for the negative root locus.

Turn in your MATLAB plots as well as hand sketches of root loci along with all accompanying calculations and explanations.

Solution:

1) a) Poles: $p_{1}=0, p_{2,3}=-2 \pm 2 j$
$n=3, m=0 \Rightarrow 3$ asymptotes
The negative side of real axis is on loci.
b) Phase condition check

$$
\begin{aligned}
& \phi_{1}+\phi_{2}+\phi_{3} \stackrel{?}{=} \pi(2 k+1) \\
& \phi_{1}=\pi / 2, \phi_{2}=\tan ^{-1}\left(\frac{-1}{2}\right), \phi_{3}=\tan ^{-1}\left(\frac{3}{2}\right) \\
& \left.\Rightarrow \phi_{1}+\phi_{2}+\phi_{3}<\pi \quad \text { (because } \phi_{3}+\phi_{2}<\pi / 2\right)
\end{aligned}
$$

$\therefore s=j$ is NOT on loci.

c) Angle of asymptotes:

$$
\frac{(2 k+1) \pi}{n-m}= \pm \frac{\pi}{3} \text { and } \pi
$$

Center of asymptotes:

$$
\alpha=\frac{\sum p_{i}-\sum z_{i}}{n-m}=-\frac{4}{3}
$$

Departure angles:

$$
\begin{gathered}
\phi_{1, d e p}=\pi \\
\phi_{2, d e p}=\pi-\frac{3 \pi}{4}-\frac{\pi}{2}=-\frac{\pi}{4} \\
\phi_{3, d e p}=-\phi_{2, d e p}=\frac{\pi}{4}
\end{gathered}
$$

d) $j \omega$-crossings:

$$
\begin{gathered}
s\left(s^{2}+4 s+8\right)+\left.K\right|_{s=j \omega}=0 \\
\Rightarrow-j \omega^{3}-4 \omega^{2}+8 j \omega+K=0 \\
\Rightarrow K=4 \omega^{2}, \omega^{3}-8 \omega=0 \Rightarrow \omega=0, \pm \sqrt{8}, K=0,32
\end{gathered}
$$

Multiple roots:

$$
\begin{gathered}
b(s) \frac{d a(s)}{d s}-a(s) \frac{d b(s)}{d s}=0 \\
\left(3 s^{2}+8 s+8\right)-\left(s^{3}+4 s^{2}+8 s\right) \cdot 0=s^{3}+s^{2}-s-1=0 \\
\Rightarrow s=-1.333 \pm 0.9428 \text { (not valid) }
\end{gathered}
$$

e)

f) 1-a) Poles: $p_{1}=0, p_{2,3}=-2 \pm 2 j$
$n=3, m=0 \Rightarrow 3$ asymptotes
The positive side of real axis is on loci.
1-b) Phase condition check

$$
\begin{aligned}
& \phi_{1}+\phi_{2}+\phi_{3} \stackrel{?}{=} 2 k \pi \\
& \phi_{1}=\pi / 2, \phi_{2}=\tan ^{-1}\left(\frac{-1}{2}\right), \phi_{3}=\tan ^{-1}\left(\frac{3}{2}\right) \\
& \left.\Rightarrow \phi_{1}+\phi_{2}+\phi_{3} \neq 2 k \pi \quad \text { (because } \phi_{3}+\phi_{2}<\pi / 2\right)
\end{aligned}
$$

$\therefore s=j$ is NOT on loci.

1-c) Angle of asymptotes:

$$
\frac{2 k \pi}{n-m}= \pm \frac{2 \pi}{3} \text { and } 0
$$

Center of asymptotes: The same as positive root locus Departure angles:

$$
\begin{gathered}
\phi_{1, \text { dep }}=0 \\
\phi_{2, \text { dep }}=2 \pi-\frac{3 \pi}{4}-\frac{\pi}{2}=\frac{3 \pi}{4} \\
\phi_{3, \text { dep }}=-\phi_{2, \text { dep }}=-\frac{3 \pi}{4}
\end{gathered}
$$

1-d) $j \omega$ - crossings: From d)-1), $\omega=0, \quad K=0$ Multiple roots: The same as positive root locus.
1 -e)

2) a) Poles: $p_{1}=1, p_{2,3}=-1$, Zeros: $z_{1}=0$
$n=3, m=1 \Rightarrow 2$ asymptotes
The only part of real axis on Loci is $0 \leq \sigma \leq 1$.
b)

$$
\begin{aligned}
& \phi_{1}+\phi_{2}+\phi_{3}-\psi_{1} \stackrel{?}{=} \pi(2 k+1) \\
& \phi_{1}=\frac{3 \pi}{4}, \phi_{2}=\phi_{3}=\pi / 4, \psi_{1}=\pi / 2 \\
& \frac{3 \pi}{4}+\frac{\pi}{4}+\frac{\pi}{4}-\frac{\pi}{2}=\frac{3 \pi}{4} \neq \pi
\end{aligned}
$$

$\therefore s=j$ is NOT on loci.

c) Angle of asymptotes $= \pm \frac{\pi}{2}$

Center of asymptotes:

$$
\alpha=\frac{\sum p_{i}-\sum z_{i}}{n-m}=-\frac{1}{2}
$$

Departure and arrival angles:

$$
\begin{gathered}
\phi_{1, \text { dep }}=\pi \\
\psi_{1, a r r}=0 \\
\phi_{2, d e p}=\frac{1}{2}(\pi-0-0)=\frac{\pi}{2} \\
\phi_{3, \text { dep }}=\frac{1}{2}(\pi-2 \pi)=-\frac{\pi}{2}
\end{gathered}
$$

d) $j \omega$-crossings:

$$
\begin{gathered}
\\
(s-1)(s+1)^{2}+\left.K S\right|_{s=j \omega}=0 \\
\Rightarrow \\
s^{3}+s^{2}+(K-1) s-\left.1\right|_{s=j \omega}=0 \\
\Rightarrow \\
-j \omega^{3}-\omega^{2}+j \omega(K-1)-1=0 \\
\Rightarrow \omega\left(\omega^{2}-K+1\right)=0, \omega^{2}=-1 \text { (No solution) }
\end{gathered}
$$

This can be checked by Routh method.
Multiple roots:

$$
\begin{gathered}
b(s) \frac{d a(s)}{d s}-a(s) \frac{d b(s)}{d s}=0 \\
s\left(3 s^{2}+2 s-1\right)-\left(s^{3}+s^{2}-s-1\right)=2 s^{3}+s^{2}+1=0 \\
\Rightarrow s=-1(\text { valid }), s=0.25 \pm 0.6614 j \text { (not valid) }
\end{gathered}
$$

e)

f) 2-a) Poles: $p_{1}=1, p_{2,3}=-1$, Zeros: $z_{1}=0$
$n=3, m=1 \Rightarrow 2$ asymptotes
The part of real axis on Loci is $[-\infty, 0]$ and $[1, \infty]$.
2-b)

$$
\begin{aligned}
& \phi_{1}+\phi_{2}+\phi_{3}-\psi_{1} \stackrel{?}{=} 2 k \pi \\
& \phi_{1}=\frac{3 \pi}{4}, \phi_{2}=\phi_{3}=\pi / 4, \psi_{1}=\pi / 2 \\
& \frac{3 \pi}{4}+\frac{\pi}{4}+\frac{\pi}{4}-\frac{\pi}{2}=\frac{3 \pi}{4} \neq 2 k \pi
\end{aligned}
$$

$\therefore s=j$ is NOT on loci.
$2-\mathrm{c}$) Angle of asymptotes $=0, \pi$
Center of asymptotes: The same as positive root locus.
Departure and arrival angles:

$$
\begin{gathered}
\phi_{1, \text { dep }}=0 \\
\psi_{1, a r r}=\pi \\
\phi_{2, \text { dep }}=\frac{1}{2}(2 \pi+\pi-\pi-0)=\pi \\
\phi_{3, d e p}=-\phi_{2, \text { dep }}=-\pi
\end{gathered}
$$

2-d) $j-\omega$ crossings: From d)-2), no solution.
Multiple roots: From d)-2), $s=-1$.

2-e)

