
ECE 486 PROBLEM SET 3 - SOLUTION Fall 2023

Reading: FPE, Sections 3.3-3.6.

Problems: (unless otherwise noted, you can use a calculator/computer to arrive at numerical answers)

1. Using techniques for block diagram reduction discussed in class, find the transfer functions of the
systems a) and d) shown in FPE, Figure 3.54 on page 158 (6th edition), Figure 3.45 on page 154 (5th
edition), Figure 3.55 on page 187 (4th edition). Of the four diagrams shown, only do the first and the last.

Solution:

a) aaa

Ĝ2 =
G2

1−G2H2
, Ĝ3 =

G3

1−G3H3

GRY =
G1(1 + Ĝ2)

1 +G1(1 + Ĝ2)Ĝ3

=
G1(1−G2H2 +G2)(1−G3H3)

(1−G2H2)(1−G3H3) +G1(1−G2H2 +G2)G3

d) aaa



G1 =
B(s)

1 +B(s)H(s)

GRY =
D +AG1

1 +G(D +AG1)

=
D + AB

1+BH

1 +G
(
D + AB

1+BH

)
=

D +DBH +AB

1 +BH +GD +GDBH +GAB

2. Consider the transfer function H(s) =
1

s2 + s+ 1
.

a) Suppose that you are given the following time-domain specs: tr ≤ 2.5, ts ≤ 8. Plot the admissible
pole locations in the s-plane corresponding to these two specs. Does the given system satisfy these specs?

b) Suppose that in addition to the specs from a), we have the following spec on the overshoot:
Mp ≤ 1/e2. Plot the admissible pole locations in the s-plane corresponding to all three specs. Does the
given system satisfy the new spec?

c) Now suppose that you are given the two specs from a) plus the following spec on the peak time:
tp ≤ 4 (instead of the overshoot spec). Plot the admissible pole locations in the s-plane corresponding to
these three specs. (Pole locations for peak time were not discussed in class, so you need to derive this.)
Does the given system satisfy the new spec?

Solution:

a)

tr ≤ 2.5⇒ 1.8

ωn
≤ 2.5⇒ ωn ≥ 0.72

Considering 5% settling time:

ts =
3

σ
≤ 8⇒ σ ≥ 3

8
= 0.375

Poles of H(s): p1,2 = −1
2±

√
3
2 j. We see that specs of part a) are satisfied since poles are in admissible

shaded area.
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b)

Mp = e
− ζπ√

1−ζ2 ≤ e−2 ⇒ ζπ√
1− ζ2

≥ 2

θ = sin−1 ζ = tan−1

(
ζ√

1− ζ2

)
≥ tan−1

(
2

π

)
= 32◦

Now the admissible region is the double shaded area and the poles do not lie in it. Therefore, the
overshoot spec is not satisfied.

c)

tp =
π

ωd
≤ 4⇒ ωd ≥

π

4
= 0.785

The specs are satisfied but note that tp ≤ 4 overrules tr ≤ 2.5.

Note: in part a), we used 5% settling time. It can be easily verified that if one uses 1% settling time,
even the first specs are not satisfied.

3. For the feedback system shown in the diagram
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determine the range of proportional gains K so that the overshoot of the closed-loop system (in response
to the unit step reference input) is no more than 10%.

Solution:

GRY =
K

s2 + 2s+K

⇒ ωn =
√
K, ζ =

1√
K

or K =
1

ζ2

Mp ≤ 10%⇒ ζ ≥ 0.59

∴ 0 < K ≤ 2.86

4. The purpose of this exercise is to illustrate that a system with a pair of poles on the imaginary axis
is not stable because it gives unbounded response to a sinusoidal signal that matches the system’s natural
frequency (this phenomenon is known as resonance). Consider the transfer function

G(s) =
1

s2 + ω2
n

, ωn > 0

and the input u(t) = sin(ωt), ω > 0.

a) Derive the response of the system, using both the partial fractions method and the frequency
response formula. What happens to this response as ω approaches ωn? (We know that the two methods
give different answers, the first one being more precise in terms of the transient response, but qualitatively
they should lead to the same conclusion here.)

b) To characterize the response more precisely, compute it using the convolution integral y(t) =∫ t
0 h(t− τ)u(τ)dτ (note: these are the correct limits of integration). Identify the term in your calculation

that leads to unbounded response when ω = ωn. You can use the trigonometric identities sin(a − b) =
sin a cos b− cos a sin b and (sin a)2 = (1− cos 2a)/2.

Solution:

a)

u(t) = sin(ωt), ω > 0 ⇒ U(s) =
ω

s2 + ω2

Y (s) = G(s)U(s) =
ω

(s2 + ω2
n)(s2 + ω2)

PFE:

Y (s) =
ω

ω2
n − ω2

[
1

s2 + ω2
− 1

s2 + ω2
n

]
⇒ y(t) =

ω

ω2
n − ω2

(
sin(ωt)

ω
− sin(ωnt)

ωn

)
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Calculating the limit of the above function (using L’Hopital Rule) when ω → ωn, it can be shown
that

y(t)⇒ sin(ωnt)− ωnt cos(ωnt)

2ω2
n

which grows linearly with t. So when t→∞, y →∞.

Frequency Response Method:

G(s) =
1

s2 + ω2
n

⇒ G(jω) =
1

(jω)2 − ω2
n

=
1

ω2
n − ω2

⇒ |G(jω)| =
∣∣∣∣ 1

ω2
n − ω2

∣∣∣∣ →∞ when ω → ωn.

b) For part b), I assume that the input frequency is equal to natural frequency of the system i.e. ω = ωn

G(s) =
1

s2 + ω2
n

⇒ g(t) =
1

ωn
sin(ωt)

y(t) = u(t) ∗ g(t)

=

∫ t

0
sin(ωn(t− τ))

sin(ωnτ)

ωn
dτ

=
1

ωn

∫ t

0

cos(ωn(t− τ)− ωnτ)− cos(ωn(t− τ) + ωnτ)

2
dτ

=
1

2ωn

∫ t

0
cos(ωn(t− 2τ))− cos(ωnt)dτ

=
1

2ωn

∫ t

0
cos(ωn(t− 2τ))dτ − cos(ωnt)

2ωn

∫ t

0
dτ

=
1

4ω2
n

[sin(ωn(t− 2τ))]t0 +
t cos(ωnt)

2ωn

=
sin(ωnt)

2ω2
n

− t cos(ωnt)

2ωn

⇒ y(t) =
sin(ωnt)

2ω2
n

− t cos(ωnt)

2ωn
, which grows linearly with t. So when t→∞, y →∞.

5. Determine whether or not the following polynomials have any RHP roots:

a) s4 + 8s3 + 32s2 + 80s+ 100 b) s5 + 5s4 + 2s3 − s2 + 4s+ 10

(Computer use not allowed.)

Solution:
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a) s4 + 8s3 + 32s2 + 80s+ 100

s4 : 1 32 100
s3 : 8 80

s2 : −

∣∣∣∣∣∣ 1 32
8 80

∣∣∣∣∣∣
8

100 → 32×8−80
8 = 22

s1 : −

∣∣∣∣∣∣ 8 80
22 100

∣∣∣∣∣∣
22

→ 22×80−800
22 = 480

11

s0 : 100

There is no sign change in the first column of the Routh array ⇒ There are no RHP roots for the
above polynomial.

b) s5 + 5s4 + 2s3 − s2 + 4s+ 10
Checking Necessary condition: There is a sign change in the coefficients of the polynomial while none
of the coefficients are missing ⇒ There is definitely an RHP root.
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