NOTE: You don't need to submit this problem set, it is just to help you prepare for the final exam. Solutions will be posted on the web.

Reading: FPE, Sections 7.6 and 7.10 .2 (6th and 5th editions), 7.4 and 7.9.2 (4th edition).

Problems:

1. In class we derived the closed-loop system obtained with dynamic output feedback in (x, \hat{x})-coordinates:

$$
\binom{\dot{x}}{\dot{\hat{x}}}=\left(\begin{array}{cc}
A & -B K \\
L C & A-L C-B K
\end{array}\right)\binom{x}{\hat{x}}
$$

and later rewrote it in (x, e)-coordinates. Rewrite the same system in (\hat{x}, e)-coordinates.
Solution:

$$
\begin{gather*}
\dot{x}=A x-B K \hat{x} \tag{1}\\
\dot{\hat{x}}=(A-B K) \hat{x}+L C(x-\hat{x}) \tag{2}
\end{gather*}
$$

Subtracting equation (1) and (2),

$$
\dot{x}-\dot{\hat{x}}=A(x-\hat{x})-L C(x-\hat{x})
$$

Since $e=x-\hat{x}$,

$$
\binom{\dot{\hat{x}}}{\dot{e}}=\left(\begin{array}{cc}
A-B K & L C \\
0 & A-L C
\end{array}\right)\binom{\hat{x}}{e}
$$

2. Consider the plant transfer function $G(s)=\frac{1}{s(s+1)}$.
a) Find any controllable and observable state-space realization of $G(s)$.
b) Stabilize the state-space system from part a) by dynamic output feedback. Select arbitrary controller and observer poles such that the closed-loop system is stable and has reasonable damping (in your judgement).
c) Compute the transfer function of the controller you found in part b). Write it in the form $k D(s)$, where k is a scalar gain (not to be confused with the state feedback gain matrix K) and $D(s)$ is a ratio of monic polynomials (leading coefficients equal 1).
d) Draw the (positive) root locus for $L(s)=D(s) G(s)$ and find on it the locations of the closed-loop poles you chose in part b).
e) Draw the Bode plot for $k D(s) G(s)$ and compute the gain margin and phase margin.
f) Decide whether you're happy with the closed-loop system. If not, go back and improve the design.

Solution:

$$
G(s)=\frac{1}{s(s+1)}
$$

a) Using Matlab tf2ss:

$$
\begin{aligned}
& \dot{x}=A x+B u \\
& y=C x+D u
\end{aligned} \Longrightarrow A=\left(\begin{array}{cc}
-1 & 0 \\
1 & 0
\end{array}\right), B=\left(\begin{array}{ll}
1 & 0
\end{array}\right), C=\left(\begin{array}{ll}
0 & 1
\end{array}\right), D=0
$$

We can check $\mathcal{C}(A, B), \mathcal{O}(C, A)$ and see that the realization is observable and controllable b,c) Assume the closed-loop poles: $-2 \pm j$ and the observer poles : $-10 \pm 2 j$

$$
\begin{gathered}
\mathcal{K}=\left[\begin{array}{ll}
3 & 5
\end{array}\right] \\
\mathcal{L}=\left[\begin{array}{l}
85 \\
19
\end{array}\right] \Longrightarrow D_{1}(s)=K(s I-A+B \mathcal{K}+\mathcal{L} C)^{-1} \mathcal{L} \\
D_{1}(s)=\frac{350 s+520}{s^{2}+23 s+166} \\
D_{1}(s)=k D(s), k=350, D(s)=\frac{s+1.4857}{s^{2}+23 s+166}
\end{gathered}
$$

d,e)

f) It is a good design, stable, and good PM, GM. If we need more bandwidth, we should assign the CL poles farther left in LHP.
3. Consider the system

$$
\begin{aligned}
\dot{x}_{1} & =x_{1}+x_{2} \\
\dot{x}_{2} & =-x_{1}+x_{2}+u \\
y & =2 x_{1}+x_{2}
\end{aligned}
$$

and suppose that the control objective is to minimize the performance index $\int_{0}^{\infty}\left[\rho y^{2}(t)+u^{2}(t)\right] d t, \rho>0$.
a) Show graphically the locations of the optimal closed-loop poles as the parameter ρ varies (symmetric root locus).
b) See why in the limit as $\rho \rightarrow 0$ ("expensive control" case), the optimal closed-loop poles become mirror images of the open-loop poles across the imaginary axis.
c) See why in the limit as $\rho \rightarrow \infty$ ("cheap control" case), one optimal closed-loop pole cancels the open-loop zero and the other moves off to $-\infty$.

Solution:

$$
\begin{aligned}
& \dot{x}=\left(\begin{array}{cc}
1 & 1 \\
-1 & 1
\end{array}\right) x+\binom{0}{1} u \\
& y=\left(\begin{array}{ll}
2 & 1
\end{array}\right) x
\end{aligned}
$$

a)

$$
\begin{gathered}
G(s)=C(s I-A)^{-1} B=\frac{s+1}{s^{2}-2 s+2} \\
G(s) G(-s)=\frac{(s+1)(-s+1)}{\left(s^{2}-2 s+2\right)\left(s^{2}+2 s+2\right)}
\end{gathered}
$$

The symmetric RL is attached.

b) open-loop poles: $1 \pm j$ from the attached SRL, we see that for every ρ, we assign the LHP pole for the CL system (due to symmetry vs imaginary axis)

For $\rho=0$, the CL-optimal poles would be $-1 \pm j$ because the OL-poles are on RHP, it would be the mirror images of OL-poles across the imaginary axis (Note: if the OL-poles were on LHP, then CL-poles would be equal to OL poles in this case).
c) For $\rho \rightarrow \infty$, one pole moves to zero, the zero is on LHP, so it cancels the pole, and the other one goes to $-\infty$.

