
ECE 486 LAST PROBLEM SET (#12) - SOLUTION Fall 2023

NOTE: You don’t need to submit this problem set, it is just to help you prepare for the final exam.
Solutions will be posted on the web.

Reading: FPE, Sections 7.6 and 7.10.2 (6th and 5th editions), 7.4 and 7.9.2 (4th edition).

Problems:

1. In class we derived the closed-loop system obtained with dynamic output feedback in (x, x̂)-coordinates:

(

ẋ
˙̂x

)

=

(

A −BK

LC A− LC −BK

)(

x

x̂

)

and later rewrote it in (x, e)-coordinates. Rewrite the same system in (x̂, e)-coordinates.

Solution:

ẋ = Ax−BKx̂ (1)

˙̂x = (A−BK)x̂+ LC(x− x̂) (2)

Subtracting equation (1) and (2),

ẋ− ˙̂x = A(x− x̂)− LC(x− x̂)

Since e = x− x̂,
(

˙̂x
ė

)

=

(

A−BK LC

0 A− LC

)(

x̂

e

)

2. Consider the plant transfer function G(s) =
1

s(s+ 1)
.

a) Find any controllable and observable state-space realization of G(s).

b) Stabilize the state-space system from part a) by dynamic output feedback. Select arbitrary controller
and observer poles such that the closed-loop system is stable and has reasonable damping (in your judge-
ment).

c) Compute the transfer function of the controller you found in part b). Write it in the form kD(s), where
k is a scalar gain (not to be confused with the state feedback gain matrix K) and D(s) is a ratio of monic
polynomials (leading coefficients equal 1).

d) Draw the (positive) root locus for L(s) = D(s)G(s) and find on it the locations of the closed-loop poles
you chose in part b).

e) Draw the Bode plot for kD(s)G(s) and compute the gain margin and phase margin.

f) Decide whether you’re happy with the closed-loop system. If not, go back and improve the design.

Solution:

G(s) =
1

s(s+ 1)



a) Using Matlab tf2ss:

ẋ = Ax+Bu

y = Cx+Du
=⇒ A =

(

−1 0
1 0

)

, B =
(

1 0
)

, C =
(

0 1
)

, D = 0

We can check C(A,B), O(C,A) and see that the realization is observable and controllable

b,c) Assume the closed-loop poles: −2± j and the observer poles : −10± 2j

=⇒
K =

[

3 5
]

L =

[

85
19

]

=⇒ D1(s) = K(sI −A+BK + LC)−1
L

D1(s) =
350s + 520

s2 + 23s + 166

D1(s) = kD(s), k = 350, D(s) =
s+ 1.4857

s2 + 23s+ 166

d,e) aaa
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f) It is a good design, stable, and good PM, GM. If we need more bandwidth, we should assign the CL
poles farther left in LHP.

3. Consider the system

ẋ1 = x1 + x2

ẋ2 = −x1 + x2 + u

y = 2x1 + x2

and suppose that the control objective is to minimize the performance index
∫

∞

0
[ρy2(t) + u2(t)]dt, ρ > 0.

a) Show graphically the locations of the optimal closed-loop poles as the parameter ρ varies (symmetric
root locus).

b) See why in the limit as ρ → 0 (“expensive control” case), the optimal closed-loop poles become mirror
images of the open-loop poles across the imaginary axis.

c) See why in the limit as ρ → ∞ (“cheap control” case), one optimal closed-loop pole cancels the open-loop
zero and the other moves off to −∞.

Solution:

ẋ =

(

1 1
−1 1

)

x+

(

0
1

)

u

y =
(

2 1
)

x

a)

G(s) = C(sI −A)−1B =
s+ 1

s2 − 2s+ 2

G(s)G(−s) =
(s+ 1)(−s + 1)

(s2 − 2s + 2)(s2 + 2s+ 2)

The symmetric RL is attached.
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b) open-loop poles: 1 ± j from the attached SRL, we see that for every ρ, we assign the LHP pole for
the CL system (due to symmetry vs imaginary axis)

For ρ = 0, the CL-optimal poles would be −1 ± j because the OL-poles are on RHP, it would be
the mirror images of OL-poles across the imaginary axis (Note: if the OL-poles were on LHP, then
CL-poles would be equal to OL poles in this case).

c) For ρ → ∞, one pole moves to zero, the zero is on LHP, so it cancels the pole, and the other one
goes to −∞.
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