Reading: FPE, Sections 6.2, 6.4-6.6, 6.7.1, 6.7.2.
Problems: (you can use MATLAB in all problems, but you must explain all steps and justify all answers)

1. Consider the transfer function $G(s)=\frac{1}{s\left(s^{2}+4 s+8\right)}$, which already appeared in Problem Set 5 .
a) Recall (or rederive) the value of K for which the closed-loop characteristic equation $1+K G(s)$ has roots on the $j \omega$-axis.
b) For this value of K, make the Bode plot of $K G(s)$ using MATLAB and explain how you can confirm the presence of $j \omega$-axis closed-loop poles using this plot.
c) Compute the gain and phase margins for $K=12$ using the corresponding Bode plot.
d) Determine the gain K that gives the phase margin of 60°.
e) Plot the step responses of the closed-loop systems for $K=12$ and the K you found in part d). Which system has better damping (smaller overshoot)? Why?
2. Consider the transfer function $G(s)=\frac{1}{(s-1)\left(s^{2}+2 s+5\right)}$.
a) Derive the values of K for which the closed-loop characteristic equation $1+K G(s)$ has roots on the $j \omega$-axis.
b) For these values of K, make the Bode plots of $K G(s)$ using MATLAB and explain how you can confirm the presence of $j \omega$-axis closed-loop poles using these plots.
c) Compute the gain and phase margins for $K=7$ using the corresponding Bode plot.
d) What is the largest possible phase margin? Determine the gain K for which it is achieved.
e) The transfer function $K G(j \omega)$ in this problem has a term of the form $(j \omega \tau-1)^{-1}$ (unstable real pole) which has not been considered in class. Performing an analysis similar to the one done in class for a term of the form $(j \omega \tau+1)^{-1}$ (stable real pole), explain the contribution of such a term both to the magnitude and to the phase plot.
3. Show that for the transfer function $K G(s)=\frac{\omega_{n}^{2}}{s^{2}+2 \zeta \omega_{n} s}$, the phase margin is independent of ω_{n} and is given by

$$
P M=\tan ^{-1}\left(\frac{2 \zeta}{\sqrt{\sqrt{4 \zeta^{4}+1}-2 \zeta^{2}}}\right)
$$

4. Consider the system $G(s)=\frac{1}{s(s+1)}$.
a) Design a PD controller that achieves phase margin $\mathrm{PM} \approx 90^{\circ}$ and closed-loop bandwidth $\omega_{\mathrm{BW}} \approx 10$. Verify that the specs are met (be careful: you will need both open-loop and closed-loop data for this).
b) Can you modify the above design to get $\omega_{\mathrm{BW}} \approx 1$, while maintaining $\mathrm{PM} \approx 90^{\circ}$? Explain how or why not.
5. In class we studied the following problem: for the system $G(s)=\frac{1}{s^{2}}$, design a lead controller that gives $\mathrm{PM} \approx 90^{\circ}$ and $\omega_{\mathrm{BW}} \approx 0.5$. This homework problem asks you to check and improve the design given in class.
a) For the controller derived in class:

$$
K D(s)=\frac{1}{16} \frac{\frac{s}{0.1}+1}{\frac{s}{2}+1}
$$

compute the PM, open-loop crossover frequency ω_{c}, and closed-loop bandwidth ω_{BW}. Plot the closed-loop step response. Explain the reasons why this design didn't fully meet the specs.
b) Improve the design to obtain PM and ω_{BW} closer to the specs. Does the new closed-loop step response show better damping?

